Residual Effects of Sucrose and Hormonal Treatments of the Tuberization Medium on in Vitro Germination of Potato (Solanum tuberosum L.) Microtubers

Abstract

The residual effects of sucrose concentrations (80 or 100 g·L-1) and hormonal treatments (BAP + Kinetin or Coumarin) of tuberization medium on in vitro microtubers germination of three potato varieties (Solanum tuberosum L.) so called Aida, Atlas and Odessa, are described. After 3 weeks of incubation at 28℃ ± 1℃, 70% of Aida microtubers variety, previously formed in the MT2 medium [MS/2 + 80 g·L-1 Sucrose], germinated. The best germination rate for varieties Atlas (100%) and Odessa (66.66%) was obtained on microtubers previously formed in the medium MT2 [MS/2 + 100 g·L-1 Sucrose]. The addition of hormones in the tuberization medium allowed optimizing the microtubers germination of the Aida variety unlike the other varieties. Indeed, for the Aida variety, the combination M5 [Kin 2.5 mg·L-1 + Coum 0.025 mg·L-1 + Sucrose 80 g·L-1] increased the germination rate from 70% up to 93.33%. The best germination rate (90%), noticed with microtubers of Atlas variety, initially formed in M2 medium [Kin 1 mg·L-1 + BAP 1 mg·L-1 + Sucrose 100 g·L-1], was lower than that one (100%) obtained on medium without hormones. For Odessa variety, the maximum germination rate (53.33%) of microtubers, from the medium M4 [Kin 2.5 mg·L-1 + BAP 1 mg·L-1 + Sucrose 100 g·L-1], was also lower than that one (66.66%) observed in the medium without hormones. Aida and Atlas varieties thus offer a better germination rate than Odessa after their cold storage.

Share and Cite:

A. Diémé, M. Nahr Sambe, E. Agbangba and M. Sy, "Residual Effects of Sucrose and Hormonal Treatments of the Tuberization Medium on in Vitro Germination of Potato (Solanum tuberosum L.) Microtubers," American Journal of Plant Sciences, Vol. 4 No. 9, 2013, pp. 1872-1878. doi: 10.4236/ajps.2013.49230.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. Lakhoua and O. Ellouze, “Induction de la Microtubérisation Chez Solanum tuberosum Variété: Spunta,” Cinquantenaire de la Culture in Vitro Versailles (France), Paris, 24-25 October 1990.
[2] FAO, “Production Year Book,” Vol. 53, 1999, pp. 170-199.
[3] P. J. Wang and C. Y. Hu, “In Vitro Mass Tuberization and Virus Free Seed Potato Production in Taiwan,” American Potato Journal, Vol. 59, No. 1, 1982, pp. 33-37. doi:10.1007/BF02854881
[4] C. L. Lê and G. F. Collet, “Conservation in Vitro de L’Assortiment Suisse des Variétés de Pomme de Terre,” Revue Suisse d’Agricculture, Vol. 20 No. 5, 1988, pp. 277-281.
[5] A. Dieme, M. Sagna and M. O. Sy, “Influence of Hormonal Treatments and of Sucrose on the Microtuberization of Three Potato Varieties (Solanum tuberosum L.) Adapted to Agroclimatic Conditions in Senegal,” International Journal of Plant, Animal and Environmental Sciences, Vol. 1, No. 3, 2011, pp. 69-77.
[6] M. A. Harmey, M. P. Crowley and P. E. M. Clinch, “The Effect of Growth Regulator on Tuberisation of Cultured Stems of Solanum tuberosum,” European Potato Journal, Vol. 9, 1966, pp. 146-151. doi:10.1007/BF02364301
[7] M. Ebadi, A. R. Iranbakhsh and G. R. Bakhshi Khaniki, “The Study of Shoot Formation and Microtuberization in Continuous and Semicontinuous Bioreactor,” Pakistan Journal of Biological Sciences, Vol. 10, No. 6, 2007, pp. 861-867.
[8] M. Ebadi and A. Iranbakhsh, “The Induction and Growth of Potato (Solanum tuberosum L.) Microtubers (Sante Cultivar) in Response to the Different Concentrations of 6-Benzylaminopurine and Sucrose,” African Journal of Biotechnology, Vol. 10, No. 52, 2011, pp. 10626-10635.
[9] S. Désiré, J. P. Couillerot, J. Hilbert and L. J. Vasseur, “Protein Exchange in Solanum tuberosum L. during Storage and Dormancy Breaking of in Vitro Microtubers,” Plant Physiology and Biochemistry, Vol. 33, No. 4, 1995, pp. 479-487.
[10] G. Hussey and N. J. Stacey, “In Vitro Propagation of Potato (Solanum tuberosum L.),” Annals of Botany, Vol. 48, No. 6, 1981, pp. 787-796.
[11] T. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bioassays, with Tobacco Tissue Culture,” Physiologia Plantarum, Vol. 15, No. 3, 1962, pp. 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x
[12] S. Désiré, J. P. Couillerot, J. Hilbert and L. J. Vasseur, “Dormancy and Germination of Microtubers of Potato (Solanum tuberosum L.) Produced in Vitro: Effects of Sucrose Concentration in the Medium of Tuberization, the Shelf Life at 4?C and Treatment with Gibberellic Acid,” Acta Botanica Gallica, Vol. 142, No. 4, 1995, pp. 371-378. doi:10.1080/12538078.1995.10515257
[13] M. K. Van Ittersum, “Relation between Growth Conditions and Dormancy of Seed Potatoes: Effects of Nitrogen,” Potato Research, Vol. 35, No. 4, 1992, pp. 355-364. doi:10.1007/BF02357592
[14] C. M. Chinchilla, “Effecto Temperature Almacenamiento y Algunas Sustancia Quimica in the Interrupcion del Papa Reposo TB (Solanum tuberosum L.). Cv. Atzimba,” Agronomy Costarr, Vol. 9, No. 2, 1985, pp. 187-191.
[15] A. Dieng, “Microtuberization and Micropropagation of Two Varieties of Potato (Solanum tuberosum L.) Adapted to the Agro-Climatic Conditions in Senegal,” Mémoire de DEA, Université Cheikh Anta Diop de Dakar, FST/BV, 1993.
[16] C. G. N. Turnbull and D. E. Hanke, “The Control of Bud Dormancy in Potato Solanum tuberosum Cultivar Majestic Tubers: Evidence for the Primary Role of Cytokinins and a Seasonal Pattern of Changing Sensibility to Cytokinins,” Planta, Vol. 165, 1985, pp. 359-365. doi:10.1007/BF00392233
[17] H. Mioduszewska and M. Biclinska-Czarnecka, “Influence of GA3 Treatment on Acid Phosphatase Activity in Potato Tubers towards the End of Growth, in Dormancy and Sprouting,” Acta Physiologiae Plantarum, Vol. 6, No. 21, 1984, pp. 75-81.
[18] R. D. S. Sidikou, D. Sihachakr, D. Lavergne, A. Nato, D. Ellissèche, B. Jouan and G. Ducreux, “Study of Microtuberisation of Potato (Solanum tuberosum L.) in the Sahel,” Revue Agriculture (Montrouge), Vol. 12, No. 1, 2003, pp. 7-14.
[19] J. P. Couillerot, “Effects and Distribution of 14C-Gibberellic Acid Application to Seed after Potato Microtubers,” Phyton, Vol. 54, 1993, pp. 67-73.
[20] A. Dieme, “Influence de Traitements Hormonaux et du Saccharose sur la Capacité Germinative de Microtubercules de Pomme de Terre Après Conservation au Froid,” Mémoire de DEA, Université Cheikh Anta Diop de Dakar, FST/BV, 2006.
[21] Y. Du Jardin, C. Hdider and J. de Rick, “Carbon Nutrition in Vitro Regulation and Manipulation of Carbon Assimilation in Micropropagated System. Automaten and Environmental Control in Plant Tissue Culture,” Kluwer Academic Publishers, Dordrecht, 1995, pp. 411-471.
[22] T. Roitch and R. Ehness, “Regulation of Sucrose/Sink Relations by Cytokinins,” Plant Growth Regulation Journal, Vol. 32, 2000, pp. 359-367.
[23] A. J. Abbot and A. R. Belcher, “Potato Tuber Formation in Vitro. Plant Tissue Culture and Its Agricultural Application,” Butterworths, Vol. 11, 1986, pp. 113-122.
[24] C. L. Lê and D. Thomas, “Production de Microtubercules de Pomme de Terre in Vitro: Effet de la Durée de Culture,” Recherche Agronomique Suisse, Vol. 1, No. 11-12, 2010, pp. 404-409.
[25] F. Mani, M. Mhamdi, T. Ettaieb and C. Annachi, “Effet du Saccharose sur la Tubérisation in Vitro de la Pomme de Terre (Solanum tuberosum L.),” Revue Nature & Technologie, Vol. 7, 2012, pp. 38-43.
[26] N. J. Vakis, “Influence of Physiological Ageing of Seed Potatoes on Yield and Earliness,” Potato Research, Vol. 29, No. 3, 1986, pp. 417-425. doi:10.1007/BF02359973

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.