SRY in an XX male does not influence random chromosome X inactivation: Cytogenetic evidence. Definition of the boundaries of the translocated Y segment through FISH and PCR-RT in a case report and review of the literature

Abstract

We report a case of an SRY positive XX male. The phenotype was completely masculinised except for the reduced facial hair; testes were small, and azoospermia was present. The patient’s metaphases, coloured with acridine-orange to reveal the late replicating X chromosome, were sequentially hybridised with SRY and X centromeric probes: a random X chromosome inactivation pattern (XCIP) was present, with SRY present about half the time on both the active X and the inactive X. The most likely hypothesis is that the translocated SRY gene escaped inactivation as part of the entire X Pseudo Autosomal telomeric Region 1 (PAR 1). This hypothesis can explain the masculine phenotype, which would be incompatible with a halved expression of SRY. Review of the literature about the association of 46, XX males with a specific XCI pattern is made. The analysis of region AZF and QF-PCR for Y polymorphic loci allowed us to define the boundaries of the translocated Y segment as restricted to the region around the SRY locus. Chromosomal fragility analysis, using SCE (Sister Chromatid Exchanges), ruled out chromosomal fragility as a predisposing factor in the proband’s father; in addition, no chromosome Y polymorphic variant (inversion, Y qh +/﹣), was present in the proband’s father. However, like the AZF region c microdeletions and PRKX/PRKY translocation XX males, a particular Y haplotype could be also in this case a predisposing factor.

Share and Cite:

Stabile, M. , Altieri, V. , Salzillo, R. , Marrollo, P. , Stabile, G. , Iuorio, T. and Moscato, B. (2013) SRY in an XX male does not influence random chromosome X inactivation: Cytogenetic evidence. Definition of the boundaries of the translocated Y segment through FISH and PCR-RT in a case report and review of the literature. Open Journal of Genetics, 3, 27-32. doi: 10.4236/ojgen.2013.32A3004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Wang, T., Liu, J.H., Yang, J., Chen, J. and Ye, Z.Q. (2009) XX male sex reversal syndrome: A case report and review of the genetic basis. Andrologia, 41, 59-62. doi:10.1111/j.1439-0272.2008.00889.x
[2] Heather, P. and Michael, W. (1996) Sox genes: Architects of development. Molecular Medicine, 2, 405-412.
[3] Harley, V.R., Clarkson, M.J. and Argentaro, A. (2003) The molecular action and regulation of the testis-determining factors, SRY (sex-determining region on the Y chromosome) and SOX9 [SRY-related high-mobility group (HMG) box 9]. Endocrine Reviews, 24, 466-487. doi:10.1210/er.2002-0025
[4] Flaquer, A., Rappold, G.A., Wienker, T.F. and Fischer, C. (2008) The human pseudoautosomal regions: A review for genetic epidemiologists. European Journal of Human Genetics, 16, 771-779. doi:10.1038/ejhg.2008.63
[5] Chien, S.C., Li, Y.C., Ho, M., Hsu, P.C., Teng, R.H., Lin, W.D., Tsai, F.J. and Lin, C.C. (2009) Rare rearrangements: A “jumping satellite” in one family and autosomal location of the SRY gene in an XX male. American Journal of Medical Genetics Part A, 149A, 2775-2781. doi:10.1002/ajmg.a.32958
[6] Queralt, R., Madrigal, I., Vallecillos, M.A., Morales, C., Ballescá, J.L., Oliva, R., Soler, A., Sánchez, A. and Margarit, E. (2008) Atypical XX male with the SRY gene located at the long arm of chromosome 1 and a 1qter microdeletion. American Journal of Medical Genetics Part A, 146A, 1335-1340. doi:10.1002/ajmg.a.32284
[7] Bouayed Abdelmoula, N., Portnoi, M.F., Keskes, L., Recan, D., Bahloul, A., Boudawara, T., Saad, A. and Rebai, T. (2003) Skewed X-chromosome inactivation pattern in SRY positive XX maleness: A case report and review of literature. Annales de Genetique, 46, 11-18. doi:10.1016/S0003-3995(03)00011-X
[8] Minor, A., Mohammed, F., Farouk, A., Hatakeyama, C., Johnson, K., Chow, V. and Ma, S. (2008) Genetic characterization of two 46,XX males without gonadal ambiguities. Journal of Assisted Reproduction and Genetics, 25, 547-552. doi:10.1007/s10815-008-9265-7
[9] Gunes, S., Asci, R., Okten, G., Atac, F., Onat, O.E., Ogur, G., Aydin, O., Ozcelik, T. and Bagci, H. (2013) Two males with SRY-positive 46,XX testicular disorder of sex development. Systems Biology in Reproductive Medicine, 59, 42-47. doi:10.3109/19396368.2012.731624
[10] Vorona, E., Zitzmann, M., Gromoll, J., Schüring, A.N. and Nieschlag, E. (2007) Clinical, endocrinological, and epigenetic features of the 46,XX male syndrome, compared with 47,XXY Klinefelter patients. Journal of Clinical Endocrinology & Metabolism, 92, 3458-3465. doi:10.1210/jc.2007-0447
[11] Sharp, A., Kusz, K., Jaruzelska, J., Tapper, W., Szarras-Czapnik, M., Wolski, J. and Jacobs, P. (2005) Variability of sexual phenotype in 46,XX(SRY+) patients: The in-fluence of spreading X inactivation versus position effects. Journal of Medical Genetics, 42, 420-427. doi:10.1136/jmg.2004.022053
[12] Xia, X.Y., Cui, Y.X., Lu, H.Y., Yang, B., Wang, G.H., Pan, L.J., Hou, B.S., Ge, Y.F., Shao, Y., Yao, B. and Huang, Y.F. (2012) Clinical, molecular and cytogenetic studies on 4 patients with 46, XX (SRY positive) male syndrome. Cytogenetic and Genome Research, 136, 270-277.
[13] Ben Salah, G., Kamoun, H., Rebai, A., Ben Youssef, A., Ayadi, H., Belghith-Mahfoudh, N., Fourati, A., Ayadi, H. and Fakhfakh, F. (2010) Sister chromatid exchange (SCE) and high-frequency cells (HFC) in peripheral blood lymphocytes of healthy Tunisian smokers. Mutation Research, 719, 1-6. doi:10.1016/j.mrgentox.2010.09.003
[14] Schneider-Gadicke, A., Beer-Romero, P., Brown, L.G., Nussbaum, R. and Page, D.C. (1989) ZFX has a gene structure similar to ZFY, the putative human sex determinant, and escapes X inactivation. Cell, 57, 1247-1258. doi:10.1016/0092-8674(89)90061-5
[15] Hammer, M.F., Chamberlain, V., Kearney, V.F., Stover, D., Zhang, G., Karafet, T., Walsh, B. and Redd, A.J. (2005) Population structure of Y chromosome SNP haplogroups in the United States and forensic implications for constructing Y chromosome STR databases. Forensic Science International.
[16] Chen-Shtoyerman, R., Josefsberg Ben-Yehoshua, S., Nissani, R., Rosensaft, J. and Appelman, Z. (2012) A prevalent Y;15 translocation in the Ethiopian Beta Israel community in Israel. Cytogenetic and Genome Research, 136, 171-174. doi:10.1159/000336201
[17] Palka-Bayard-de-Volo, C., De Marco, S., Chiavaroli, V., Alfonsi, M., Calabrese, G., Chiarelli, F. and Mohn, A. (2012) Array-CGH characterization of a de novo t(X;Y) (p22;q11) in a female with short stature and mental retardation. Gene, 504, 107-110. doi:10.1016/j.gene.2012.05.009
[18] Kong, X., Murphy, K., Raj, T., He, C., White, P.S. and Matise, T.C. (2004) A combined linkage—Physical map of the human genome. American Journal of Human Genetics, 75, 1143-1148. doi:10.1086/426405
[19] Burgoyne, P.S. (1982) Genetic homology and crossing over in the X and Y chromosomes of Mammals. Human Genetics, 61, 85-90. doi:10.1007/BF00274192
[20] Freije, D., Helms, C., Watson, M.S. and Donis-Keller, H. (1992) Identification of a second pseudoautosomal region near the Xq and Yq telomeres. Science, 258, 1784-1787. doi:10.1126/science.1465614
[21] Kim, J.W., Park, S.Y., Ryu, H.M., Lee, D.E., Lee, B.Y., Kim, S.Y., Park, Y.S., Lee, H.S. and Seo, J.T. (2010) Molecular and clinical characteristics of 26 cases with structural y chromosome aberrations. Mutation Research, 719, 1-6. doi:10.1016/j.mrgentox.2010.09.003
[22] Navarro-Costa, P., Plancha Carlos, E. and Goncalves J. (2010) Genetic dissection of the AZF regions of the human Y chromosome: Thriller or filler for male (in)fertility? Journal of Biomedicine and Biotechnology, 2010, 936569. doi:10.1155/2010/936569
[23] Navarro-Costa, P., Goncalves, J. and Plancha Carlos, E. (2010) The AZFc region of the Y chromosome: At the cross-roads between genetic diversity and male infertility. Human Reproduction Update, 16, 525-542. doi:10.1093/humupd/dmq005
[24] Navarro-Costa, P., Pereira, L., Alves, C., Gusmao, L., Proenoa, C., Marques-Vidal, P., Rocha, T., Correia, S., Sónia, C.J., Neves, A., Soares Ana, P., Nunes, J., Calhaz-Jorge, Carlos., Amorim, A., Plancha Carlos, E. and Gon-calves, J. (2007) Characterizing partial AZFc deletions of the Y chromosome with amplicon-specific sequence markers. BMC Genomics, 8, 342. doi:10.1186/1471-2164-8-342
[25] Arredi, B., Ferlin, A., Speltra, E., Bedin, C., Zuccarello, D., Ganz, F., Marchina, E., Stuppia, L., Krausz, C. and Foresta, C. (2007) Y-chromosome haplogroups and susceptibility to azoospermia factor c microdeletion in an Italian population. Journal of Medical Genetics, 44, 205-208. doi:10.1136/jmg.2006.046433
[26] Rosser, Z.H., Balaresque, P. and Jobling, M.A. (2009) Gene conversion between the X chromosome and the male-specific region of the Y chromosome at a translocation hotspot. American Journal of Human Genetics, 85, 130-134. doi:10.1016/j.ajhg.2009.06.009
[27] Jobling, M.A., Williams, G.A., Schiebel, G.A., Pandya, G.A., McElreavey, G.A., Salas, G.A., Rappold, G.A., Affara, N.A. and Tyler-Smith, C. (1998) A selective difference between human Y-chromosomal DNA haplotypes. Current Biology, 8, 1391-1394. doi:10.1016/S0960-9822(98)00020-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.