Development of a Microplate Lectin-Capture RT-PCR (MLC-RT-PCR) for the Detection of Avian Infectious Bronchitis Virus

Abstract

Rapid, sensitive and specific methods are necessary to confirm the diagnosis of outbreaks of avian infectious bronchitis virus (IBV) infection. The amplification of IBV genome by reverse transcription followed by polymerase chain reaction (RT-PCR) has been one of the most used methods for the detection of this virus in clinical samples. To reduce the time and the number of steps in the molecular diagnosis of IBV, we developed a sensitive and rapid detection method based on viral capture by a lectin (Concanavalin ACon A) in the microplate wells, followed by RT-PCR to amplify the S1 gene. The detection limit of IBV was 103 EID50/ml for the amplification of 5’part of the S1 gene, and 104 EID50/ml for the amplification of full S1 gene. This technique was specific for IBV detection, and no amplified products were detected for other avian viral pathogens (bursal infectious disease virus, avian metapneumovirus and Newcastle disease virus). The MLC-RT-PCR was as sensitive as conventional RT-PCR, and virus isolation method for the detection of IBV in tissue samples collected from experimentally infected birds. The MLC-RT-PCR technique demonstrated a great potential for the rapid and specific diagnosis of IBV.

Share and Cite:

M. Montassier, V. Piza, C. Okino, L. Brentano, L. Richtzenhain and H. Montassier, "Development of a Microplate Lectin-Capture RT-PCR (MLC-RT-PCR) for the Detection of Avian Infectious Bronchitis Virus," Advances in Microbiology, Vol. 3 No. 3, 2013, pp. 273-279. doi: 10.4236/aim.2013.33039.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Cavanagh, “Coronavirus Avian Infectious Bronchitis Virus,” Veterinary Research, Vol. 38, No. 2, 2007, pp. 281-297. doi:10.1051/vetres:2006055
[2] D. Cavanagh and J. F. Gelb Jr., Infectious Bronchitis, In: Y. M. Saif, Ed., Diseases of Poultry, 12th Edition, Wiley-Blackwell, Hoboken, 2008, pp. 117-137.
[3] J. J. De Wit, “Detection of Infectious Bronchitis Virus,” Avian Pathology, Vol. 29, No. 2, 2000, pp. 71-93. doi:10.1080/03079450094108
[4] J. Ignjatovic and S. Sapats, “Avian Infectious Bronchitis Virus,” Revue Scientifique et Technique, Vol. 19, No. 2, 2000, pp. 493-508.
[5] International Committee on Taxonomy of Viruses. http://ictvonline.org/virusTaxonomy.asp?version=2011
[6] M. M. C. Lai and D. Cavanagh, “The Molecular Biology of Coronaviruses,” Advances in Virus Research, Vol. 48, 1997, pp. 1-100. doi:10.1016/S0065-3527(08)60286-9
[7] World Organisation for Animal Health (OIE), Avian Infectious Bronchitis. Chapter 2.3.2. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 6th Edition, OIE, Paris, 2008.
[8] M. Y. Deng, H. Wang, G. B. Ward, T. R. Beckham and T. S. McKenna, “Comparison of Six RNA Extraction Methods for the Detection of Classical Swine Fever Virus by Real-Time and Conventional Reverse Transcription-PCR” Journal of Veterinary Diagnostic Investigation, Vol. 17, No. 6, 2005, pp. 574-578. doi:10.1177/104063870501700609
[9] R. Dhumpa, K. J. Handberg, P. H. Jorgensen, S. Yi, A. Wolff and D. D. Bang, “Rapid Detection of Avian Influenza Virus in Chicken Fecal Samples by Immunomagnetic Capture Reverse Transcriptase-Polymerase Chain Reaction Assay,” Diagnostic, Microbiology and Infectious Disease, Vol. 69, No. 3, 2011, pp. 258-265. doi:10.1016/j.diagmicrobio.2010.09.022
[10] D. Cavanagh, K. Mawditt, P. Britton and C. J. Naylor, “Longitudinal Field Studies of Infectious Bronchitis Virus and Avian Pneumovirus in Broilers Using Type-Specific Polymerase Chain Reactions,” Avian Pathology, Vol. 28, No. 6, 1999, pp. 593-605. doi:10.1080/03079459994399
[11] K. J. Handberg, O. L. Nielsen, M. W. Pedersen and P. H. Jorgensen, “Detection and Strain Differentiation of Infectious Bronchitis Virus in Tracheal Tissue from Experimentally Infected Chickens by Reverse Transcription-Polymerase Chain Reaction. Comparison with an Immunohistochemical Technique,” Avian Pathology, Vol. 28, No. 4, 1999, pp. 327-335. doi:10.1080/03079459994579
[12] M. W. Jackwood, D. A. Hilt and S. A. Callison, “Detection of Infectious Bronchitis Virus by Real-Time Reverse Transcriptase-Polymerase Chain Reaction and Identification of a Quasispecies in the Beaudette Strain,” Avian Diseases, Vol. 47, No. 3, 2003, pp. 718-724. doi:10.1637/6075
[13] C. H. Okino, M. F. S. Montassier, P. E .N. Givisiez, C. R. A. G. Furuyama, L. Brentano and H. J. Montassier, “Infectious Bronchitis Virus: Detection and Vaccine Strain Differentiation by Semi-Nested RT-PCR,” Brazilian Journal of Poultry Science, Vol.7, No. 1, 2005, pp. 59-66.
[14] S. A. Callison, D. A. Hilt, T. O. Boynton, B. F. Sample, R. Robison, D. E. Swayne and M. W. Jackwood, “Development and Evaluation of a Real-Time Taqman RT-PCR Assay for the Detection of Infectious Bronchitis Virus from Infected Chickens,” Journal of Virological Methods, Vol. 138, No. 1-2, 2006, pp. 60-65. doi:10.1016/j.jviromet.2006.07.018
[15] K. Hewson, A. H. Noormohammadi, J. M. Devlin, K. Mardani and J. Ignjatovic, “Rapid Detection and Non-Subjective Characterisation of Infectious Bronchitis Virus Isolates Using High-Resolution Melt Curve Analysis and a Mathematical Model,” Archives of Virology, Vol. 154, No. 4, 2009, pp. 649-660. doi:10.1007/s00705-009-0357-1
[16] R. M. Jones, R. J. Ellis, W. J. Cox, J. Errington, C. Fuller, R. M. Irvine and P. R. Wakeley, “Development and Validation of RT-PCR Tests for the Detection and S1 Genotyping of Infectious Bronchitis Virus and Other Closely Related Gammacoronaviruses within Clinical Samples,” Transboundary and Emerging Diseases, Vol. 58, No. 5, 2011, pp. 411-420. doi:10.1111/j.1865-1682.2011.01222.x
[17] R. W. Jansen, G. Siegl and S. M. Lemon, “Molecular Epidemiology of Human Hepatitis A Virus Defined by an Antigen-Capture Polymerase Chain Reaction Method,” Proceedings of National Academy of Science, Vol. 87, No. 8, 1990, pp. 2867-2871. doi:10.1073/pnas.87.8.2867
[18] G. Le Gall-Reculé, F. Zwingestein, Y. Portejoie and G. Le Gall, “Immunocapture-RT-PCR Assay for Detection and Molecular Epidemiology Studies of Rabbit Haemorrhagic Disease and European Brown Hare Síndrome viruses,” Journal of Virological Methods, Vol. 97, No. 1-2, 2001, pp. 49-57. doi:10.1016/S0166-0934(01)00336-6
[19] Y. Park, Y. H. Cho, Y. Jee and G. Ko, “Immunomagnetic Separation Combined with Real-Time Reverse Transcriptase PCR Assays for Detection of Norovirus in Contaminated Food,” Applied and Environmental Microbiology, Vol. 74, No. 13, 2008, pp. 4226-4230. doi:10.1128/AEM.00013-08
[20] L. Yao, Q. Wu, D. Wang, X. Kou and J. Zhang, “Development of Monoclonal Antibody-Coated Immunomagnetic Beads for Separation and Detection of Norovirus (Genogroup II) in Faecal Extract Samples,” Letters in Applied Microbiology, Vol. 49, No. 2, 2009, pp. 173-178. doi:10.1111/j.1472-765X.2009.02638.x
[21] M. J. Payne. S. Campbel and R. G. Kroll, “Lectin-Magnetic Separation Can Enhance Methods for the Detection of Staphylococcus aureus, Salmonella enteritidis and Listeria monocytogenes,” Food Microbiology, Vol. 10, No. 1, 1993, pp. 75-83. doi:10.1006/fmic.1993.1008
[22] H. Becht, R. Rott and H. D. Klenk, “Effect of Concanavalin A on Cells Infected with Enveloped RNA Viruses,” Journal of General Virology, Vol. 14, No. 1, 1972, pp. 1-8. doi:10.1099/0022-1317-14-1-1
[23] E. Keyaerts, L. Vijgen, C. Pannecouque, E. Van Damme, W. Peumans, H. Egberink, J. Balzarini and M. Van Ranst, “Plant Lectins Are Potent Inhibitors of Coronaviruses by Interfering with Two Targets in the Viral Replication Cycle,” Antiviral Research, Vol. 75, No. 3, 2007, pp. 179-187. doi:10.1016/j.antiviral.2007.03.003
[24] R. R. V. M. Bronzoni, M. F. S. Montassier, G. T. Pereira, N. M. Q. Gama, V. Sakai and H. J. Montassier, “Detection of Infectious Bronchitis Virus and Specific Anti-Viral Antibodies Using a Concanavalin A-Sandwich-ELISA,” Viral Immunology, Vol. 18, No. 3, 2005, pp. 269-578. doi:10.1089/vim.2005.18.569
[25] J. A. Lancer and C. R. Howard, “The Polypeptides of Infectious Bronchitis Virus (IBV-41 strain),” Journal of General Virology, Vol. 46, No. 2, 1980, pp. 349-361. doi:10.1099/0022-1317-46-2-349
[26] M. F. S. Montassier , L. Brentano, L. J. Richtzenhain and H. J. Montassier, “Genetic Diversity on S1 Glycoprotein of Avian Infectious Bronchitis Virus Strains Isolated in Brazil between 1988-2000,” Vol. 1, Proceedings of the 5th International Symposium on Avian Coronavirus, Rauischholzhausen, 14-16 May 2006, pp. 119-131.
[27] M. F. S. Montassier , L. Brentano, H. J. Montassier and L. J. Richtzenhain, “Genetic Grouping of Avian Infectious Bronchitis Virus Isolated in Brazil Based on RT-PCR/ RFLP Analysis of the S1 Gene,” Pesquisa Veterinária Brasileira, Vol. 28, No. 3, 2008, pp. 190-194. doi:10.1590/S0100-736X2008000300011
[28] R. L. Owen, “Detection of Viral Antigen Following Exposure of One-Day-Old Chicken to the Holland-52-Strain of IBV,” Avian Pathology, Vol. 20, No. 4, 1991, pp. 663-673. doi:10.1080/03079459108418805
[29] P. Villegas, “Titration of Biological Suspensions,” In: D. E. Swayne, J. R. Glisson, M. W. Jackwood, J. E. Pearson and W. M. Reed, Eds., A Laboratory Manual for the Isolation and Identification of Avian Pathogens, The American Association of Avian Pathologists, Pennsylvania, 1998, pp. 248-254.
[30] L. Yu, Z. Wang, Y. Jiang, S. Low and J. Kwang, “Molecular Epidemiology of Infectious Bronchitis Virus Isolates from China and Southeast Asia,” Avian Diseases, Vol. 45, No. 1, 2001, pp. 201-209. doi:10.2307/1593029
[31] H. M. Kwon, M. W. Jackwood and J. F. Gelb Jr., “Differentiation of Infectious Bronchitis Virus Serotypes Using Polymerase Chain Reaction and Restriction Fragment Length Polymorphism Analysis,” Avian Diseases, Vol. 37, No. 1, pp. 194-202. doi:10.2307/1591474
[32] R. E. Gough, D. J. Alexander, A. S. Collins and W. J. Cox, “Routine Virus Isolation or Detection in the Diagnosis of Diseases in Birds,” Avian Pathology, Vol. 17, No. 4, 1988, pp. 893-906. doi:10.1080/03079458808436511
[33] R. Meir, O. Maharat, Y. Farnushi and L. Simanov, “Development of a Real-Time TaqMan RT-PCR Assay for the Detection of Infectious Bronchitis Virus in Chickens, and Comparison of RT-PCR and Virus Isolation,” Journal of Virological Methods, Vol. 163, No. 2, 2010, pp. 190-194. doi:10.1016/j.jviromet.2009.09.014
[34] A. Rodriguez, J. I. Nunez, G. Nolasco, F. A. Ponz, F. Sobrino and C. de Blas, “Direct PCR Detection of Foot-And-Mouth Disease Virus,” Journal of Virological Methods, Vol. 47, No. 3, 1994, pp. 345-349. doi:10.1016/0166-0934(94)90030-2
[35] C. L. Kho, M. L. Mohd-Azmi, S. S. Arshad and K. Yusoff, “Performance of an RT-Nested PCR ELISA for the Detection of Newcastle Disease Virus,” Journal of Virological Methods, Vol. 86, No. 1, 2001, pp. 71-83. doi:10.1016/S0166-0934(99)00185-8
[36] G. Nolasco, C. de Blas, V. Torres and F. A. Ponz, “A Method Combining Immunocapture and PCR Amplification in a Microtiter Plate for the Detection of Plant Viruses and Subviral Pathogens,” Journal of Virological Methods, Vol. 45, No. 2, 1993, pp. 201-218. doi:10.1016/0166-0934(93)90104-Y
[37] T. Wetzel, T. Candresse, G. Macquaire, M. Ravelonandro and J. Dunez, “A Highly Sensitive Immunocapture Polymerase Chain Reaction Method for Plum Pox Potyvirus Detection,” Journal of Virological Methods, Vol. 39, No. 1-2, 1992, pp. 27-37. doi:10.1016/0166-0934(92)90122-T

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.