Modeling Multiple Quantum Well and Superlattice Solar Cells
Carlos I. Cabrera, Julio C. Rimada, Maykel Courel, Luis Hernandez, James P. Connolly, Agustín Enciso, David A. Contreras-Solorio
Academic Unit of Physics, Autonomous University of Zacatecas, Zacatecas, México.
Academic Unit of Physics, Autonomous University of Zacatecas, Zacatecas, México; Faculty of Physics, University of Havana, La Habana, Cuba.
Department of Physics, University of Pinar del Río, Pinar del Río, Cuba.
Nanophotonics Technology Center, Universidad Politécnica de Valencia, Valencia, Spain.
Solar Cell Laboratory, Institute of Materials Science and Technology (IMRE), University of Havana, Havana, Cuba.
Solar Cell Laboratory, Institute of Materials Science and Technology (IMRE), University of Havana, Havana, Cuba; Higher School in Physics and Mathematics, National Polytechnic Institute, Mexico City, Mexico.
DOI: 10.4236/nr.2013.43030   PDF    HTML   XML   5,995 Downloads   9,374 Views   Citations

Abstract

The inability of a single-gap solar cell to absorb energies less than the band-gap energy is one of the intrinsic loss mechanisms which limit the conversion efficiency in photovoltaic devices. New approaches to ultra-high efficiency solar cells include devices such as multiple quantum wells (QW) and superlattices (SL) systems in the intrinsic region of a p-i-n cell of wider band-gap energy (barrier or host) semiconductor. These configurations are intended to extend the absorption band beyond the single gap host cell semiconductor. A theoretical model has been developed to study the performance of the strain-balanced GaAsP/InGaAs/GaAs MQWSC, and GaAs/GaInNAs MQWSC or SLSC. Our results show that conversion efficiencies can be reached which have never been obtained before for a single-junction solar cell.

Share and Cite:

C. Cabrera, J. Rimada, M. Courel, L. Hernandez, J. Connolly, A. Enciso and D. Contreras-Solorio, "Modeling Multiple Quantum Well and Superlattice Solar Cells," Natural Resources, Vol. 4 No. 3, 2013, pp. 235-245. doi: 10.4236/nr.2013.43030.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. W. J. Barnham and C. Duggan, “A New Approach to High-Efficiency Multi-Bandgap Solar Cells,” Journal of Applied Physics, Vol. 67, No. 7, 1990, pp. 3490-3493. doi:10.1063/1.345339
[2] J. Nelson, M. Paxman, K. W. J. Barnham, J. S. Roberts and C. Button, “Steady-State Carrier Escape from Single Quantum Wells,” IEEE Journal of Quantum Electronics, Vol. 29, No. 6, 1993, pp. 1460-1465. doi:10.1109/3.234396
[3] M. Paxman, J. Nelson, K. W. J. Barnham, B. Braun, J. P. Connolly, C. Button, J. S. Roberts and C. T. Foxon, “Modeling the Spectral Response of the Quantum Well Solar Cell,” Journal of Applied Physics, Vol. 74, No. 1, 1993, pp. 614-621. doi:10.1063/1.355275
[4] M. Courel, J. C. Rimada and L. Hernández, “AlGaAs/ GaAs Superlattice Solar Cells,” Progress in Photovoltaics: Research and Applications, Vol. 21, No. 3, 2012, pp. 276-282. doi:10.1002/pip.1178
[5] P. R. Griffin, J. Barnes, K. W. J. Barnham, G. Haarpaintner, M. Mazzer, C. Zanotti-Fregonara, E. Grunbaum, C. Olson, C. Rohr, J. P. R. David, J. S. Roberts, R. Gray and M. A. Pate, “Effect of Strain Relaxation on Forward Bias Dark Currents in GaAs/InGaAs Multiquantum Well p-i-n Diodes,” Journal of Applied Physics, Vol. 80, No. 10, 1996, pp. 5815-5820. doi:10.1063/1.363574
[6] N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill and M. Mazzer, “StrainBalanced GaAsP/InGaAs Quantum Well Solar Cells,” Applied Physics Letters, Vol. 75, No. 26, 1999, pp. 495-497. doi:10.1063/1.125580
[7] D. C. Johnson, I. Ballard, K. W. J. Barnham, M. Mazzer, T. N. D. Tibbits, J. Roberts, G. Hill and C. Calder, “Optimisation of Photon Recycling Effects in Strain-Balanced Quantum Well Solar Cells,” Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, Hawaii, 7-12 May 2006, pp. 26-31.
[8] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa, “GaInNAs: A Novel Material for LongWavelength-Range Laser Diodes with Excellent HighTemperature Performance,” Japanese Journal of Applied Physics, Vol. 35, Pt. 1, 1996, pp. 1273-1275. doi:10.1143/JJAP.35.1273
[9] D. J. Friedman and S. R. Kurtz, “Breakeven Criteria for the GaInNAs Junction in GaInP/GaAs/GaInNAs/Ge FourJunction Solar Cells,” Progress in Photovoltaics, Vol. 10, No. 5, 2002, pp. 331-344. doi:10.1002/pip.430
[10] A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin and G. Radhakrishnan, “III-V Dilute Nitride-Based Multi-Quantum Well Solar Cell,” Journal of Crystal Growth, Vol. 301-302, 2007, pp. 993-996. doi:10.1016/j.jcrysgro.2006.11.256
[11] E. Reyes-Gómez, L. E. Oliveira and M. de Dios-Leyva, “Quasi-Bond States and Intra-Band Transition Energies in GaAs-(Ga,Al)As Variably Spaced Semiconductor Superlattices,” Physica B, Vol. 358, No 1-4, 2005, pp. 269-278. doi:10.1016/j.physb.2005.01.462
[12] J. C. Rimada, L. Hernández, J. P. Connolly and K. W. J. Barnham, “Conversion Efficiency Enhancement of AlGaAs Quantum Well Solar Cells,” Microelectronics Journal, Vol. 38, No. 4-5, 2007, pp. 513-518. doi:10.1016/j.mejo.2007.03.007
[13] K. W. J. Barnham and D. Vvedensky, “Low-Dimensional Semiconductor Structures,” Cambridge University Press, Cambridge, 2001, pp. 280-286. doi:10.1017/CBO9780511624247
[14] S.-H. Yen, M.-L. Chen and Y.-K. Kuo, “Gain and Threshold Properties of InGaAsN/GaAsN Material System for 1. 3-μm Semiconductor Lasers,” Optics & Laser Technology, Vol. 39, No. 7, 2007, pp. 1432-1436. doi:10.1016/j.optlastec.2006.10.003
[15] M. Courel, J. C. Rimada and L. Hernández, “GaAsGaInNAs Quantum Well and Superlattice Solar Cell,” Applied Physics Letters, Vol. 100, No. 7, 2012, pp. 073508-11. doi:10.1063/1.3687195

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.