Natural Antioxidants: Function and Sources

Abstract

The definition of antioxidants, given in 1995 by Halliwell and Gutteridge, stated that an antioxidant is “any substance that, when present at low concentrations compared with that of an oxidizable substrate, significantly delays or inhibits oxidation of that substrate” [1]. In 2007, Halliwell gave a more specific definition, stating that an antioxidant is “any substance that delays, prevents or removes oxidative damage to a target molecule” [2]. Oxidation reactions produce free radicals that can start multiple chain reactions that eventually cause damage or death to the cell. Antioxidants remove these free-radical intermediates by being oxidized themselves, and inhibit other oxidation reactions, thus stopping the harmful chain reactions. Such oxidative processes are dangerous for all living cells, especially those in proximity to sites where active oxygen is released by photosynthesis. Spontaneous oxidation causes food rancidity and spoilage of medicines. Furthermore, oxidative stress is an important part of many human diseases that can occur, inter alia, due to a lack of appropriate nutrition and exercise, air pollution, smoking, and more, leading to lethal diseases, such as cancer. Therefore, it is imperative to include antioxidants in our diets. Due to the fact that synthetically produced antioxidants are currently used in the food and pharmaceutical industries in order to prolong product shelf life, there is currently a strong trend to search for large, available, and efficient natural sources of antioxidants to replace the synthetic ones, thus minimizing damage to our cells.

Share and Cite:

Y. Shebis, D. Iluz, Y. Kinel-Tahan, Z. Dubinsky and Y. Yehoshua, "Natural Antioxidants: Function and Sources," Food and Nutrition Sciences, Vol. 4 No. 6, 2013, pp. 643-649. doi: 10.4236/fns.2013.46083.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Halliwell and J. M. C. Gutteridge, “The Definition and Measurement of Antioxidants in Biological Systems,” Free Radical Biology and Medicine, Vol. 18, No. 1, 1995, pp. 125-126. doi:10.1016/0891-5849(95)91457-3
[2] B. Halliwell, “Biochemistry of Oxidative Stress,” Biochemical Society Transactions, Vol. 35, No. 5, 2007, pp. 1147-1150. doi:10.1042/BST0351147
[3] M. Carocho and I. C. F. R. Ferreira, “A Review on Antioxidants, Prooxidants and Related Controversy: Natural and synthetic compounds. Screening and Analysis Methodologies and Future Perspectives,” Food and Chemical Toxicology, Vol. 51, 2013, pp. 15-25. doi:10.1016/j.fct.2012.09.021
[4] K. Rahman, “Studies on Free Radicals, Antioxidants, and Co-Factors,” Clinical Interventions in Aging, Vol. 2, No. 2, 2007, pp. 219-236.
[5] D. V. Ratnam, D. D. Ankola, V. Bhardwaj, D. K. Sahana and M. N. V. R. Kumar, “Role of Antioxidants in Prophylaxis and Therapy: A Pharmaceutical Perspective,” Journal of Controlled Release, Vol. 113, No. 3, 2006, pp. 189207. doi:10.1016/j.jconrel.2006.04.015
[6] M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur and J. Telser, “Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease,” International Journal of Biochemistry & Cell Biology, Vol. 39, No. 1, 2007, pp. 44-84. doi:10.1016/j.biocel.2006.07.001
[7] EFSA, “Scientific Opinion on the Reevaluation of Butylated Hydroxytoluene BHT (E 321) as a Food Additive. EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS),” European Food Safety Authority Journal, Vol. 10, No. 3, 2012, p. 2588. http://www.efsa.europa.eu/en/efsajournal/doc/2588.pdf
[8] C. H. Foyer and G. Noctor, “Redox Sensing and Signalling Associated with Reactive Oxygen in Chloroplasts, Peroxisomes and Mitochondria,” Physiologia Plantarum, Vol. 119, No. 3, 2003, pp. 355-364. doi:10.1034/j.1399-3054.2003.00223.x
[9] C. H. Foyer and S. Shigeoka, “Understanding Oxidative Stress and Antioxidant Functions to Enhance Photosynthesis,” Plant Physiology, Vol. 155, No. 1, 2011, pp. 93100. doi:10.1104/pp.110.166181
[10] J. Bailey-Serres and R. Mittler, “The Roles of Reactive Oxygen Species in Plant Cells (Editorial),” Plant Physiology, Vol. 141, No. 2, 2006, p. 311doi:10.1104/pp.104.900191.
[11] G. Agati, E. Azzarello, S. Pollastri and M. Tattini, “Flavonoids as Antioxidants in Plants: Location and Functional Significance,” Plant Science, Vol. 196, 2012, pp. 67-76. doi:10.1016/j.plantsci.2012.07.014
[12] C. J. Chiang, H. Kadouh and K. Q. Zhou, “Phenolic Compounds and Antioxidant Properties of Gooseberry as Affected by in Vitro Digestion,” LWT-Food Science and Technology, Vol. 51, No. 2, 2013, pp. 417-422. doi:10.1016/j.lwt.2012.11.014
[13] C. C. Wong, H. B. Li, K. W. Cheng and F. Chen, “A Systematic Survey of Antioxidant Activity of 30 Chinese Medicinal Plants Using the Ferric Reducing Antioxidant Power Assay,” Food Chemistry, Vol. 97, No. 4, 2006, pp. 705-711. doi:10.1016/j.foodchem.2005.05.049
[14] Y. Z. Cai, M. Sun and H. Corke, “Antioxidant Activity of Betalains from Plants of the Amaranthaceae,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 8, 2003, pp. 2288-2294. doi:10.1021/jf030045u
[15] B. Halliwell, “Free Radicals, Antioxidants, and Human Disease—Curiosity, Cause, or Consequence,” Lancet, Vol. 344, No. 8924, 1994, pp. 721-724. doi:10.1016/S0140-6736(94)92211-X
[16] R. W. Owen, A. Giacosa, W. E. Hull, R. Haubner, B. Spiegelhalder and H. Bartsch, “The Antioxidant/Anticancer Potential of Phenolic Compounds Isolated from Olive Oil,” European Journal of Cancer, Vol. 36, No. 10, 2000, pp. 1235-1247. doi:10.1016/S0959-8049(00)00103-9
[17] Y. Z. Cai, Q. Luo, M. Sun and H. Corke, “Antioxidant Activity and Phenolic Compounds of 112 Traditional Chinese Medicinal Plants Associated with Anticancer,” Life Sciences, Vol. 74, No. 17, 2004, pp. 2157-2184. doi:10.1016/j.lfs.2003.09.047
[18] J. H. Xiong, S. C. Li, W. J. Wang, Y. P. Hong, K. J. Tang and Q. S. Luo, “Screening and Identification of the Antibacterial Bioactive Compounds from Lonicera japonica Thunb. Leaves,” Food Chemistry, Vol. 138, No. 1, 2013, pp. 327-333. doi:10.1016/j.foodchem.2012.10.127
[19] G. A. El-Chaghaby, A. F. Ahmad and E. S. Ramis, “Evaluation of the Antioxidant and Antibacterial Properties of Various Solvents Extracts of Annona squamosa L. Leaves,” Arabian Journal of Chemistry, 2011, in press. doi:10.1016/j.arabjc.2011.06.019
[20] B. Frei and J. V. Higdon, “Antioxidant Activity of Tea Polyphenols in Vivo: Evidence from Animal Studies,” Journal of Nutrition, Vol. 133, No. 1, 2003, pp. 3275s-3284s.
[21] J. V. Higdon and B. Frei, “Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant Functions,” Critical Reviews in Food Science and Nutrition, Vol. 43, No. 1, 2003, pp. 89-143. doi:10.1080/10408690390826464
[22] B. Bozin, N. Mimica-Dukic, N. Simin and G. Anackov, “Characterization of the Volatile Composition of Essential Oils of Some Lamiaceae Spices and the Antimicrobial and Antioxidant Activities of the Entire Oils,” Journal of Agricultural and Food Chemistry, Vol. 54, No. 5, 2006, pp. 1822-1828. doi:10.1021/jf051922u
[23] V. Katalinic, M. Milos, T. Kulisic and M. Jukic, “Screening of 70 Medicinal Plant Extracts for Antioxidant Capacity and Total Phenols,” Food Chemistry, Vol. 94, No. 4, 2006, pp. 550-557. doi:10.1016/j.foodchem.2004.12.004
[24] S. Lordan, R. P. Ross and C. Stanton, “Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases,” Marine Drugs, Vol. 9, No. 6, 2011, pp. 1056-1100. doi:10.3390/md9061056
[25] R. Karawita, M. Senevirathne, Y. Athukorala, A. Affan, Y.-J. Lee, S.-K. Kim, et al., “Protective Effect of Enzymatic Extracts from Microalgae against DNA Damage Induced by H2O2,” Marine Biotechnology, Vol. 9, No. 4, 2007, pp. 479-490. doi:10.1007/s10126-007-9007-3
[26] K. N. Kim, S. J. Heo, C. B. Song, J. Lee, M. S. Heo, I. K. Yeo, et al., “Protective Effect of Ecklonia cava Enzymatic Extracts on Hydrogen Peroxide-Induced Cell Damage,” Process Biochemistry, Vol. 41, No. 12, 2006, pp. 23932401. doi:10.1016/j.procbio.2006.06.028
[27] Y. X. Li, Y. Li, S. H. Lee, Z. J. Qian and S. K. Kim, “Inhibitors of Oxidation and Matrix Metalloproteinases, Floridoside, and D-Isofloridoside from Marine Red Alga Laurencia undulata,” Journal of Agricultural and Food Chemistry, Vol. 58, No. 1, 2010, pp. 578-586. doi:10.1021/jf902811j
[28] K. Li, X. M. Li, N. Y. Ji and B. G. Wang, “Natural Bromophenols from the Marine Red Alga Polysiphonia Urceolata (Rhodomelaceae): Structural Elucidation and DPPH Radical-Scavenging Activity,” Bioorganic and Medicinal Chemistry, Vol. 15, No. 21, 2007, pp. 6627-6631. doi:10.1016/j.bmc.2007.08.023
[29] S. Singh, B. N. Kate and U. C. Banerjee, “Bioactive Compounds from Cyanobacteria and Microalgae: An Overview,” Critical Reviews in Biotechnology, Vol. 25, No. 3, 2005, pp. 73-95. doi:10.1080/07388550500248498
[30] P. MacArtain, C. I. R. Gill, M. Brooks, R. Campbell and I. R. Rowland, “Nutritional Value of Edible Seaweeds,” Nutrition Reviews, Vol. 65, No. 12, 2007, pp. 535-543. doi:10.1111/j.1753-4887.2007.tb00278.x
[31] C. C. Hu, J. T. Lin, F. J. Lu, F. P. Chou and D. J. Yang, “Determination of Carotenoids in Dunaliella salina Cultivated in Taiwan and Antioxidant Capacity of the Algal Carotenoid Extract,” Food Chemistry, Vol. 109, No. 2, 2008, pp. 439-446. doi:10.1016/j.foodchem.2007.12.043
[32] J. A. Haugan and S. Liaaenjensen, “Algal Carotenoids. 54. Carotenoids of Brown Algae (Phaeophyceae),” Biochemical Systematics and Ecology, Vol. 22, No. 1, 1994, pp. 31-41. doi:10.1016/0305-1978(94)90112-0
[33] E. Christaki, E. Bonos, I. Giannenas and P. Florou-Paneri, “Functional Properties of Carotenoids Originating from Algae,” Journal of the Science of Food and Agriculture, Vol. 93, No. 1, 2013, pp. 5-11. doi:10.1002/jsfa.5902
[34] K. H. Cha, H. J. Lee, S. Y. Koo, D. G. Song, D. U. Lee and C. H. Pan, “Optimization of Pressurized Liquid Extraction of Carotenoids and Chlorophylls from Chlorella vulgaris,” Journal of Agricultural and Food Chemistry, Vol. 58, No. 2, 2010, pp. 793-797. doi:10.1021/jf902628j
[35] A. Bocanegra, S. Bastida, J. Benedí, S. Ródenas and F. J. Sánchez-Muniz, “Characteristics and Nutritional and Cardiovascular-Health Properties of Seaweeds,” Journal of Medicinal Food, Vol. 12, No. 2, 2009, pp. 236-258. doi:10.1089/jmf.2008.0151
[36] K. H. Cha, S. W. Kang, C. Y. Kim, B. H. Um, Y. R. Na and C. H. Pan, “Effect of Pressurized Liquids on Extraction of Antioxidants from Chlorella vulgaris,” Journal of Agricultural and Food Chemistry, Vol. 58, No. 8, 2010, pp. 4756-4761. doi:10.1021/jf100062m
[37] A. R. B. de Quirós, C. C. de Ron, J. López-Hernández and M. A. Lage-Yusty, “Determination of Folates in Seaweeds by High-Performance Liquid Chromatography,” Journal of Chromatography A, Vol. 1032, No. 1-2, 2004, pp. 135-139. doi:10.1016/j.chroma.2003.11.027
[38] F. B. Metting, “Biodiversity and Application of Microalgae,” Journal of Industrial Microbiology & Biotechnology, Vol. 17, No. 5-6, 1996, pp. 477-489. doi:10.1007/BF01574779
[39] K. Miyashita, “Function of Marine Carotenoids,” Food Factors for Health Promotion, Vol. 61, 2009, pp. 136146. doi:10.1159/000212746
[40] D. Kelman, E. K. Posner, K. J. McDermid, N. K. Tabandera, P. R. Wright and A. D. Wright, “Antioxidant Activity of Hawaiian Marine Algae,” Marine Drugs, Vol. 10, No. 2, 2012, pp. 403-416. doi:10.3390/md10020403
[41] C. S. Ku, Y. Yang, Y. Park and J. Lee, “Health Benefits of Blue-Green Algae: Prevention of Cardiovascular Disease and Nonalcoholic Fatty Liver Disease,” Journal of Medicinal Food, Vol. 16, No. 2, 2013, pp. 103-111. doi:10.1089/jmf.2012.2468
[42] P. Parikh, U. Mani and U. Iyer, “Role of Spirulina in the Control of Glycemia and Lipidemia in Type 2 Diabetes Mellitus,” Journal of Medicinal Food, Vol. 4, No. 4, 2001, pp. 193-199. doi:10.1089/10966200152744463
[43] K. Iwata, T. Inayama and T. Kato, “Effects of Spirulina platensis on Plasma Lipoprotein Lipase Activity in Fructose-Induced Hyperlipidemic Rats,” Journal of Nutritional Science and Vitaminology, Vol. 36, No. 2, 1990, pp. 165-171. doi:10.3177/jnsv.36.165
[44] A. Ramamoorthy and S. Premakumari, “Effect of supplementation of Spirulina on Hypercholesterolemic Patients,” Journal of Food Science and Technology-Mysore, Vol. 33, No. 2, 1996, pp. 124-127.
[45] U. V. Mani, S. Desai and U. Iyer, “Studies on the LongTerm Effect of Spirulina Supplementation on Serum Lipid Profile and Glycated Proteins in NIDDM Patients,” Journal of Neutraceuticals Functional and Medical Foods, Vol. 2, No. 3, 2000, pp. 25-32. doi:10.1300/J133v02n03_03
[46] H. J. Park, Y. J. Lee, H. K. Ryu, M. H. Kim, H. W. Chung and W. Y. Kim, “A Randomized Double-Blind, Placebo-Controlled Study to Establish the Effects of Spirulina in Elderly Koreans,” Annals of Nutrition and Metabolism, Vol. 52, No. 4, 2008, pp. 322-328. doi:10.1159/000151486
[47] R. T. Deng and T. J. Chow, “Hypolipidemic, Antioxidant, and Antiinflammatory Activities of Microalgae Spirulina,” Cardiovascular Therapeutics, Vol. 28, No. 4, 2010, pp. e33-e45. doi:10.1111/j.1755-5922.2010.00200.x
[48] R. J. Marles, M. L. Barrett, J. Barnes, M. L. Chavez, P. Gardiner, R. Ko, et al., “United States Pharmacopeia Safety Evaluation of Spirulina,” Critical Reviews in Food Science and Nutrition, Vol. 51, No. 7, 2011, pp. 593-604. doi:10.1080/10408391003721719.
[49] M. Sánchez, J. Bernal-Castillo, C. Rozo and I. Rodríguez, “Spirulina (Arthrospira): An Edible Microorganism: A Review,” Universitas Scientiarum, Revista de la Facultad de Ciencias, Pontificia Universidad Javeriana, Vol. 8, No. 1, 2003, pp. 7-24. http://www.algbiotek.com/bilimsel/PDF%20Dosyalar/spirulina(arthrospira)genelozelliklerivebesinselonemi.pdf
[50] K. Goiris, K. Muylaert, I. Fraeye, I. Foubert, J. De Brabanter and L. De Cooman, “Antioxidant Potential of Microalgae in Relation to Their Phenolic and Carotenoid Content,” Journal of Applied Phycology, Vol. 24, No. 6, 2012, pp. 1477-1486. doi:10.1007/s10811-012-9804-6
[51] M. Plaza, A. Cifuentes and E. Ibánez, “In the Search of New Functional Food Ingredients from Algae,” Trends in Food Science and Technology, Vol. 19, No. 1, 2008, pp. 31-39. doi:10.1016/j.tifs.2007.07.012
[52] B. Axelrod, T. M. Cheesebrough and S. Laakso, “Lipoxygenase from Soybeans,” Methods in Enzymology, Vol. 71, 1981, pp. 441-451. doi:10.1016/0076-6879(81)71055-3
[53] G. E. Anthon and D. M. Barrett, “Colorimetric Method for the Determination of Lipoxygenase Activity,” Journal of Agricultural and Food Chemistry, Vol. 49, No. 1, 2001, pp. 32-37. doi:10.1021/jf000871s
[54] R. Matsukawa, Z. Dubinsky, K. Masaki, T. Takeuchi and I. Karube, “Enzymatic Screening of Microalgae as a Potential Source of Natural Antioxidants,” Applied Biochemistry and Biotechnology, Vol. 66, No. 3, 1997, pp. 239-247. doi:10.1007/BF02785590
[55] I. F. F. Benzie and J. J. Strain, “The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘Antioxidant Power’: The FRAP Assay,” Analytical Biochemistry, Vol. 239, No. 1, 1996, pp. 70-76. doi:10.1006/abio.1996.0292
[56] A. Dembinska-Kiec, O. Mykkanen, B. Kiec-Wilk and H. Mykkanene, “Antioxidant Phytochemicals against Type 2 Diabetes,” British Journal of Nutrition, Vol. 99, No. ES1, 2008, pp. ES109-ES117.
[57] H. P. Y. Sin, D. T. L. Liu and D. S. C. Lam, “Lifestyle Modification, Nutritional and Vitamins Supplements for Age-Related Macular Degeneration,” Acta Ophthalmologica, Vol. 91, No. 1, 2013, pp. 6-11. doi:10.1111/j.1755-3768.2011.02357.x
[58] L. M. Willis, B. Shukitt-Hale and J. A. Joseph, “Recent Advances in Berry Supplementation and Age-Related Cognitive Decline,” Current Opinion in Clinical Nutrition and Metabolic Care, Vol. 12, No. 1, 2009, pp. 91-94. doi:10.1097/MCO.0b013e32831b9c6e
[59] G. H. Cao, R. M. Russell, N. Lischner and R. L. Prior, “Serum Antioxidant Capacity is Increased by Consumption of Strawberries, Spinach, Red Wine or Vitamin C in Elderly Women,” Journal of Nutrition, Vol. 128, No. 12, 1998, pp. 2383-2390.
[60] S. Grossman, R. Reznik, T. Tamari and M. Albeck, “New Plant Water Soluble Antioxidant (NAO) from Spinach,” In: K. Asada and T. Toshikawa, Eds., Frontiers of Reactive Oxygen Species in Biology and Medicine, Elsevier Science, Amsterdam, 1994, pp. 57-73.
[61] S. Grossman, S. Dovrat and M. Bergman, “Natural Antioxidants: Just Free Radical Scavengers or Much More?” Trends in Cancer Research, Vol. 7, 2011, pp. 57-73.
[62] S. B. Swami, N. J. Thakor, P. M. Haldankar and S. B. Kalse, “Jackfruit and Its Many Functional Components as Related to Human Health: A Review,” Comprehensive Reviews in Food Science and Food Safety, Vol. 11, No. 6, 2012, pp. 565-576. doi:10.1111/j.1541-4337.2012.00210.x
[63] M. C. Pereira, R. S. Steffens, A. Jablonski, P. F. Hertz, A. D. Rios, M. Vizzotto, et al., “Characterization, Bioactive Compounds and Antioxidant Potential of Three Brazilian Fruits,” Journal of Food Composition and Analysis, Vol. 29, No. 1, 2013, pp. 19-24. doi:10.1016/j.jfca.2012.07.013
[64] F. S. Gomes, P. A. Costa, M. B. D. Campos, R. V. Tonon, S. Couri and L. M. C. Cabral, “Watermelon Juice Pretreatment with Microfiltration Process for Obtaining Lycopene,” International Journal of Food Science and Technology, Vol. 48, No. 3, 2013, pp. 601-608. doi:10.1111/ijfs.12005
[65] S. J. Padayatty, A. Katz, Y. H. Wang, P. Eck, O. Kwon, J. H. Lee, et al., “Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention,” Journal of the American College of Nutrition, Vol. 22, No. 1, 2003, pp. 18-35.
[66] M. Lucock, Z. Yates, L. Boyd, C. Naylor, J. H. Choi, X. Ng, et al., “Vitamin C-Related Nutrient-Nutrient and Nutrient-Gene Interactions that Modify Folate Status,” European Journal of Nutrition, Vol. 52, No. 2, 2013, pp. 569582. doi:10.1007/s00394-012-0359-8
[67] S. Salinthone, A. R. Kerns, V. Tsang and D. W. Carr, “Alpha-Tocopherol (Vitamin E) Stimulates Cyclic AMP Production in Human Peripheral Mononuclear Cells and Alters Immune Function,” Molecular Immunology, Vol. 53, No. 3, 2013, pp. 173-178. doi:10.1016/j.molimm.2012.08.005
[68] Industry Reports. http://www.reportlinker.com/ci02037/Vitamin-and-Supplement.html
[69] I. Binic, V. Lazarevic, M. Ljubenovic, J. Mojsa and D. Sokolovic, “Skin Ageing: Natural Weapons and Strategies,” Evidence-Based Complementary and Alternative Medicine, Vol. 2013, No. 2013, 2013, Article ID: 827248. doi:10.1155/2013/827248

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.