Anatase Titanium Dioxide Coated Single Wall Carbon Nanotubes Manufactured by Sonochemical-Hydrothermal Technique

Abstract

A novel, cost effective, sonochemical-hydrothermal technique was used for the deposition of nanosized anatase titanium dioxide (TiO2) onto single wall carbon nanotubes (SWCNTs). This technique is described and the characterization of the synthesized TiO2-SWCNTs is reported. The characterization techniques employed include scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction (XRD). From the characterization the size and morphology of the synthesized TiO2 nanoparticles (deposited on the SWCNTs) are reported. Furthermore, it is demonstrated that the created TiO2 nanoparticles are chemically attached to the SWCNTs. Also, an important correlation between calculated TiO2 crystal size and the red shifts in the lowest Raman TiO2 (E.g.) predominate peak is reported. The synthesized TiO2-SWCNTs have potential for large scale production and application in a variety of new technologies such as clean energy power generation devices, electrical storage devices, photocatalysts, and sensors.

Share and Cite:

P. Clemens, X. Wei, B. Wilson and R. Thomas, "Anatase Titanium Dioxide Coated Single Wall Carbon Nanotubes Manufactured by Sonochemical-Hydrothermal Technique," Open Journal of Composite Materials, Vol. 3 No. 2A, 2013, pp. 21-32. doi: 10.4236/ojcm.2013.32A004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. A. Alivisatos, “Perspectives on Physical Chemistry of Semiconductor Nanocrystals,” Journal of Physical Chemistry, Vol. 100, No. 31, 1996, pp. 13226-13239. doi:10.1021/jp9535506
[2] A. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, Vol. 271, No. 5251, 1996, pp. 933-937. doi:10.1126/science.271.5251.933
[3] C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chemical Reviews, Vol. 105, No. 4, 2005, pp. 1025-1102. doi:10.1021/cr030063a
[4] C. B. Murray, C. R. Kagan and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Annual Review of Materials Science, Vol. 30, No. 1. 2000, pp. 545-610. doi:10.1146/annurev.matsci.30.1.545
[5] Y. Yin and A. P. Alivisatos, “Colloidal Nanocrystal Synthesis and the Organic-Inorganic Interface,” Nature, Vol. 437, No. 7059, 2005, pp. 664-670. doi:10.1038/nature04165
[6] P. C. Ray, “Size and Shape Dependent Second Order Nonlinear Optical Properties of Nanomaterials and Their Application in Biological and Chemical Sensing,” Chemical Reviews, Vol. 110, No. 9, 2010, pp. 5332-5365. doi:10.1021/cr900335q
[7] S. Mostafa, F. Behafarid, J. R. Croy, L. K. Ono, L. Li, J. C. Yang, A. I. Frenkel, et al., “Shape-Dependent Catalytic Properties of Pt Nanoparticles,” Journal of the American Chemical Society, Vol. 132, No. 44, 2010, pp. 15714-15719. doi:10.1021/ja106679z
[8] M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews, Vol. 95, No. 1, 1995, pp. 69-96. doi:10.1021/cr00033a004
[9] J. Jancar, J. F. Douglas, F. W. Starr, S. K. Kumar, P. Cassagnau, A. J. Lesser, S. S. Sternstein, et al., “Current Issues in Research on Structure-Property Relationships in Polymer Nanocomposites,” Polymer, Vol. 51, No. 15, 2010, pp. 3321-3343. doi:10.1016/j.polymer.2010.04.074
[10] M. Coccia, U. Finardi and D. Margon, “Current Trends in Nanotechnology Research across Worldwide Geo-Economic Players,” The Journal of Technology Transfer, Vol. 37, No. 5, 2012, pp. 777-787. doi:10.1007/s10961-011-9219-6
[11] A. L. Linsebigler, G. Lu and J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chemical Reviews, Vol. 95, No. 3, 1995, pp. 735-758. doi:10.1021/cr00035a013
[12] A. Kongkanand and P. V. Kamat, “Electron Storage in Single Wall Carbon Nanotubes. Fermi Level Equilibration in Semiconductor-SWCNT Suspensions,” ACS Nano, Vol. 1, No. 1, 2007, pp. 13-21. doi:10.1021/nn700036f
[13] W. Wang, P. Serp, P. Kalck and J. L. Faria, “Visible Light Photodegradation of Phenol on MWNT-TiO2 Composite Catalysts Prepared by a Modified Sol-Gel Method,” Journal of Molecular Catalysis A: Chemical, Vol. 235, No. 1-2, 2005, pp. 194-199. doi:10.1016/j.molcata.2005.02.027
[14] S. Wang, L. Ji, B. Wu, Q. Gong, Y. Zhu and J. Liang, “Influence of Surface Treatment on Preparing Nanosized TiO2 Supported on Carbon Nanotubes,” Applied Surface Science, Vol. 255, No. 5, 2008, pp. 3263-3266. doi:10.1016/j.apsusc.2008.09.031
[15] D. Eder and A. H. Windle, “Carbon-Inorganic Hybrid Materials: The Carbon-Nanotube/ TiO2 Interface,” Advanced Materials, Vol. 20, No. 9, 2008, pp. 1787-1793. doi:10.1002/adma.200702835
[16] T. Y. Lee, P. S. Alegaonkar and J. B. Yoo, “Fabrication of Dye Sensitized Solar Cell Using TiO2 Coated Carbon Nanotubes,” Thin Solid Films, Vol. 515, No. 12, 2007, pp. 5131-5135. doi:10.1016/j.tsf.2006.10.056
[17] C. G. Silva and J. L. Faria, “Photocatalytic Oxidation of Benzene Derivatives in Aqueous Suspensions: Synergic Effect Induced by the Introduction of Carbon Nanotubes in a TiO2 Matrix,” Applied Catalysis B Environmental, Vol. 101, No. 1-2, 2010, pp. 81-89. doi:10.1016/j.apcatb.2010.09.010
[18] S. Santangelo, G. Messina, G. Faggio, A. Donato, L. De Luca, N. Donato, A. Bonavita, et al., “Micro-Raman Analysis of Titanium Oxide/Carbon Nanotubes-Based Nanocomposites for Hydrogen Sensing Applications,” Journal of Solid State Chemistry, Vol. 183, No. 10, 2010, pp. 2451-2455. doi:10.1016/j.jssc.2010.08.018
[19] V. Krishna, S. Pumprueg, S. Lee, J. Zhao, W. Sigmund, B. Koopman and B. Moudgil, “Photocatalytic Disinfection with Titanium Dioxide Coated Multi-Wall Carbon Nanotubes,” Process Safety and Environmental Protection, Vol. 83, No. 4, 2005, pp. 393-397. doi:10.1205/psep.04387
[20] M. Zhang, N. Zhang, J. Chu, J. Sun and Q. Li, “Synthesis of TiO2/Muti-Walled Carbon Nanotubes Composite,” High-Performance Ceramics VI, Vol. 434-435, 2010, pp. 546-548.
[21] S. Muduli, W. Lee, V. Dhas, S. Mujawar, M. Dubey, K. Vijayamohanan, S.-H. Han, et al., “Enhanced Conversion Efficiency in Dye-Sensitized Solar Cells based on Hydrothermally Synthesized TiO2-MWCNT Nanocomposites,” ACS Applied Materials Interfaces, Vol. 1, No. 9, 2009, pp. 2030-2035. doi:10.1021/am900396m
[22] A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin and S. Bonnamy, “Synthesis and Characterization of Carbon Nanotubes-TiO2 Nanocomposites,” Carbon, Vol. 42, No. 5-6, 2004, pp. 1147-1151. doi:10.1016/j.carbon.2003.12.041
[23] L. Tian, L. Ye, K. Deng and L. Zan, “TiO2/Carbon Nanotube Hybrid Nanostructures: Solvothermal Synthesis and Their Visible Light Photocatalytic Activity,” Journal of Solid State Chemistry, Vol. 184, No. 6, 2011, pp. 1465-1471. doi:10.1016/j.jssc.2011.04.014
[24] O. Frank, M. Kalbac, L. Kavan, M. Zukalova, J. Prochazka, M. Klementova and L. Dunsch, “Structural Properties and Electrochemical Behavior of CNT-TiO2 Nanocrystal Heterostructures,” Physica Status Solidi B, Vol. 244, No. 11, 2007, pp. 4040-4045. doi:10.1002/pssb.200776158
[25] L.-C. Jiang and W.-D. Zhang, “Electrodeposition of TiO2 Nanoparticles on Multiwalled Carbon Nanotube Arrays for Hydrogen Peroxide Sensing,” Electroanalysis, Vol. 21, No. 8, 2009, pp. 988-993. doi:10.1002/elan.200804502
[26] Y. Zhao, Y. Hu, Y. Li, H. Zhang, S. Zhang, L. Qu, G. Shi, et al., “Super-Long Aligned TiO2/Carbon Nanotube Arrays,” Nanotechnology, Vol. 21, No. 50, 2010, pp. 505702-50578. doi:10.1088/0957-4484/21/50/505702
[27] W. Jarernboon, S. Pimanpang, S. Maensiri, E. Swatsitang and V. Amornkitbamrung, “Effects of Multiwall Carbon Nanotubes in Reducing Microcrack Formation on Electrophoretically Deposited TiO2 Film,” Journal of Alloys and Compounds, Vol. 476, No. 1-2, 2009, pp. 840-846. doi:10.1016/j.jallcom.2008.09.157
[28] J. Cho, S. Schaab, J. A. Roether and A. R. Boccaccini, “Nanostructured Carbon Nanotube/ TiO2 Composite Coatings Using Electrophoretic Deposition (EPD),” Journal of Nanoparticle Research, Vol. 10, No. 1, 2007, pp. 99-105. doi:10.1007/s11051-007-9230-x
[29] Y. Yang, L. Qu, L. Dai, T. S. Kang and M. Durstock, “Electrophoresis Coating of Titanium Dioxide on Aligned Carbon Nanotubes for Controlled Syntheses of Photoelectronic Nanomaterials,” Advanced Materials, Vol. 19, No. 9, 2007, pp. 1239-1243. doi:10.1002/adma.200602181
[30] X. Li, J. Niu, J. Zhang, H. Li and Z. Liu, “Labeling the Defects of Single-Walled Carbon Nanotubes Using Titanium Dioxide Nanoparticles,” The Journal of Physical Chemistry B, Vol. 107, No. 11, 2003, pp. 2453-2458. doi:10.1021/jp026887y.
[31] P. P. George, V. G. Pol, A. Gedanken, A. Gabashivili, M. Cai, A. M. Mance, L. Feng, et al., “Selective Coating of Anatase and Rutile TiO2 on Carbon via Ultrasound Irradiation: Mitigating Fuel Cell Catalyst Degradation,” Journal Of Fuel Cell Science And Technology, Vol. 5, No. 4, 2008, pp. 041012-041020. doi:10.1115/1.2890105
[32] J. Liu, Y.-T. Kuo, K. J. Klabunde, C. Rochford, J. Wu and J. Li, “Novel Dye-Sensitized Solar Cell Architecture Using TiO2-Coated Vertically Aligned Carbon Nanofiber Arrays,” ACS Applied Materials Interfaces, Vol. 1, No. 8, 2009, pp. 1645-1649. doi:10.1021/am900316f
[33] S. Orlanducci, V. Sessa, M. Terranova, G. Battiston, S. Battiston and R. Gerbasi, “Nanocrystalline TiO2 on Single Walled Carbon Nanotube Arrays: Towards the Assembly of Organized C/ TiO2 Nanosystems,” Carbon, Vol. 44, No. 13, 2006, pp. 2839-2843. doi:10.1016/j.carbon.2006.03.018
[34] X. Meng, “On Developing Novel Energy-Related Nanostructured Materials By Atomic Layer Deposition,” Ph.D. Dissertation, The University of Western Ontario, London, Ontario, 2011.
[35] H. Yu, X. Quan, S. Chen and H. Zhao, “TiO2-Multiwalled Carbon Nanotube Heterojunction Arrays and Their Charge Separation Capability,” The Journal of Physical Chemistry C, Vol. 111, No. 35, 2007, pp. 12987-12991. doi:10.1021/jp0728454
[36] W. Fan, L. Gao and J. Sun, “Anatase TiO2-Coated Multi-Wall Carbon Nanotubes with the Vapor Phase Method,” Journal of the American Ceramic Society, Vol. 89, No. 2, 2006, pp. 731-733. doi:10.1111/j.1551-2916.2005.00755.x
[37] W. Feng, Y. Feng, Z. Wu, A. Fujii, M. Ozaki and K. Yoshino, “Optical and Electrical Characterizations of Nanocomposite Film of Titania Adsorbed onto Oxidized Multiwalled Carbon Nanotubes,” Physics, Vol. 17, No. 27, 2005, pp. 4361-4368.
[38] S.-R. Jang, R. Vittal and K.-J. Kim, “Incorporation of Functionalized Single-Wall Carbon Nanotubes in DyeSensitized TiO2 Solar Cells,” Langmuir the Acs Journal Of Surfaces And Colloids, Vol. 20, No. 22, 2004, pp. 9807-9810. doi:10.1021/la049022f
[39] Y. Yao, G. Li, S. Ciston, R. M. Lueptow and K. A. Gray, “Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity,” Environmental Science Technology, Vol. 42, No. 13, 2008, pp. 4952-4957. doi:10.1021/es800191n
[40] K. Lee, C. Hu, H. Chen and K. Ho, “Incorporating Carbon Nanotube in a Low-Temperature Fabrication Process for Dye-Sensitized TiO2 Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 92, No. 12, 2008, pp. 1628-1633. doi:10.1016/j.solmat.2008.07.012
[41] M. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, et al., “Reversible Water-Solubilization of Single-Walled Carbon Nanotubes by Polymer Wrapping,” Chemical Physics Letters, Vol. 342, No. 3-4, 2001, pp. 265-271.
[42] South West Nano Technologies, “CG200 Data Sheet,” 2009. http://www.swentnano.com/tech/docs/Final_CG_200_Data_Sheet.pdf
[43] I. W. Chiang, B. E. Brinson, R. E. Smalley, J. L. Margrave and R. H. Hauge, “Purification and Characterization of Single-Wall Carbon Nanotubes,” The Journal of Physical Chemistry B, Vol. 105, No. 6, 2001, pp. 1157-1161. doi:10.1021/jp003453z
[44] B. J. Landi, R. P. Raffaelle, S. L. Castro and S. G. Bailey, “Single-Wall Carbon Nanotube-Polymer Solar Cells,” Progress in Photovoltaics Research and Applications, Vol. 13, No. 2, 2005, pp. 165-172. doi:10.1002/pip.604
[45] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, et al., “Fullerene Pipes,” Science, Vol. 280, No. 5367, 1998, pp. 1253-1256. doi:10.1126/science.280.5367.1253
[46] A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodríguez-Macías, P. J. Boul, et al., “Large-Scale Purification of Single-Wall Carbon Nanotubes: Process, Product, and Characterization,” Applied Physics A Materials Science Processing, Vol. 67, No. 1, 1998, pp. 29-37. doi:10.1007/s003390050734
[47] J. E. Trancik, S. C. Barton and J. Hone, “Transparent and Catalytic Carbon Nanotube Films,” Nano Letters, Vol. 8, No. 4, 2008, pp. 982-987. doi:10.1021/nl071945i
[48] J. L. Zimmerman, R. K. Bradley, C. B. Huffman, R. H. Hauge and J. L. Margrave, “Gas-Phase Purification of Single-Wall Carbon Nanotubes,” Carbon Nanotubes, Vol. 34, No. 5, 2000, pp. 1361-1366.
[49] P. C. Eklund, J. M. Holden and R. A. Jishi, “Vibrational Modes of Carbon Nanotubes; Spectroscopy and Theory,” Carbon, Vol. 33, No. 7, 1995, pp. 959-972. doi:10.1016/0008-6223(95)00035-C
[50] K. Lakoubovskii, N. Minami, T. Ueno, S. Kazaoui and H. Kataura, “Optical Characterization of Double-Wall Carbon Nanotubes: Evidence for Inner Tube Shielding,” Journal of Physical Chemistry B, Vol. 112, No. 30, 2008, pp. 11194-11198.
[51] C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects,” Physical Review Letters, Vol. 93, No. 14, 2004, pp. 147406-147409. doi:10.1103/PhysRevLett.93.147406
[52] A. Souza Filho, S. Chou, G. Samsonidze, G. Dresselhaus, M. Dresselhaus, L. An, J. Liu, et al., “Stokes and Anti-Stokes Raman Spectra of Small-Diameter Isolated Carbon Nanotubes,” Physical Review B, Vol. 69, No. 11, 2004, pp. 1-8. doi:10.1103/PhysRevB.69.115428
[53] H. Kataura, Y. Maniwa, S. Masubuchi, S. Kazama, X. Zhao, Y. Ando, Y. Ohtsuka, S. Suzuki, Y. Achiba and R. Saito, “Bundle Effects of Single-Wall Carbon Nanotubes,” AIP Conference Proceedings, Vol. 544, 2000, pp. 262-265. doi:10.1063/1.1342514
[54] RRUFF, “Silver R070463,” 2005. http://rruff.info/silver/display=default/R070463
[55] D. Eder and A. H. Windle, “Carbon-Inorganic Hybrid Materials: The Carbon-Nanotube/ TiO2 Interface,” Advanced Materials, Vol. 20, No. 9, 2008, pp. 1787-1793. doi:10.1002/adma.200702835
[56] Y. Xie, S. H. Heo, S. H. Yoo, G. Ali and S. O. Cho, “Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-Coated Carbon Nanotubes,” Nanoscale Research Letters, Vol. 5, No. 3, 2009, pp. 603-607. doi:10.1007/s11671-009-9513-5
[57] N. Darsono, D.-H. Yoon and J. Kim, “Milling and Dispersion of Multi-Walled Carbon Nanotubes in Texanol,” Applied Surface Science, Vol. 254, No. 11, 2008, pp. 3412-3419. doi:10.1016/j.apsusc.2007.11.028
[58] D. Zhang, L. Shi, J. Fang, K. Dai and X. Li, “Preparation and Desalination Performance of Multiwall Carbon Nanotubes,” Materials Chemistry and Physics, Vol. 97, No. 2-3, 2006, pp. 415-419. doi:10.1016/j.matchemphys.2005.08.036
[59] T. Ohsaka, “Temperature Dependence of the Raman Spectrum in Anatase TiO2,” Journal of the Physical Society of Japan, Vol. 48, No. 5, 1980, pp. 1661-1668. doi:10.1143/JPSJ.48.1661
[60] M. Mikami, S. Nakamura, O. Kitao and H. Arakawa, “Lattice Dynamics and Dielectric Properties of TiO2 Anatase: A First-Principles Study,” Physical Review B, Vol. 66, No. 15, 2002, pp. 1-6. doi:10.1103/PhysRevB.66.155213
[61] G. A. Tompsett, G. A. Bowmaker, R. P. Cooney, J. B. Metson, K. A. Rodgers and J. M. Seakins, “The Raman Spectrum of Brookite, TiO2 (Pbca, Z = 8),” Journal of Raman Spectroscopy, Vol. 26, No. 1, 1995, pp. 57-62. doi:10.1002/jrs.1250260110
[62] A. L. A. Parussulo, J. A. Bonacin, S. H. Toma, K. Araki and H. E. Toma, “Unravelling the Chemical Morphology of a Mesoporous Titanium Dioxide Interface by Confocal Raman Microscopy: New Clues for Improving the Efficiency of Dye Solar Cells and Photocatalysts,” Langmuir The Acs Journal Of Surfaces And Colloids, Vol. 25, No. 19, 2009, pp. 11269-11271. doi:10.1021/la902551k
[63] W. Shao, F. Gu, C. Li and M. Lu, “Interfacial Confined Formation of Mesoporous Spherical TiO2 Nanostructures with Improved Photoelectric Conversion Efficiency,” Inorganic Chemistry, Vol. 49, No. 12, 2010, pp. 5453-5459.
[64] K. Porkodi and S. D. Arokiamary, “Synthesis and Spectroscopic Characterization of Nanostructured Anatase Titania: A Photocatalyst,” Materials Characterization, Vol. 58, No. 6, 2007, pp. 495-503. doi:10.1016/j.matchar.2006.04.019
[65] M. A. Lillo-Ródenas, N. Bouazza, A. Berenguer-Murcia, J. J. Linares-Salinas, P. Soto and A. Linares-Solano, “Photocatalytic Oxidation of Propene at Low Concentration,” Applied Catalysis B: Environmental, Vol. 71, No. 3-4, 2007, pp. 298-309. doi:10.1016/j.apcatb.2006.10.004
[66] N. Bouazza, M. Ouzzine, M. A. Lillo-Ródenas, D. Eder and A. Linares-Solano, “TiO2 Nanotubes and CNT-TiO2 Hybrid Materials for the Photocatalytic Oxidation of Propene at Low Concentration,” Applied Catalysis B Environmental, Vol. 92, No. 3-4, 2009, pp. 377-383. doi:10.1016/j.apcatb.2009.08.017
[67] Y. Yao, G. Li, S. Ciston, R. M. Lueptow and K. A. Gray, “Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity,” Environmental Science and Technology, Vol. 42, No. 13, 2008, pp. 4952-4957. doi:10.1021/es800191n
[68] W. F. Zhang, M. S. Zhang, Z. Yin and Q. Chen, “Photoluminescence in Anatase Titanium Dioxide Nanocrystals,” Applied Physics B Lasers and Optics, Vol. 70, No. 2, 2000, pp. 261-265. doi:10.1007/s003400050043
[69] D. Bersani, P. P. Lottici and X.-Z. Ding, “Phonon Confinement Effects in the Raman Scattering by TiO2 Nanocrystals,” Applied Physics Letters, Vol. 72, No. 1, 1998, pp. 73-75. doi:10.1063/1.120648
[70] S. Santangelo, G. Messina, G. Faggio, A. Donato, L. De Luca, N. Donato, A. Bonavita, et al., “Micro-Raman Analysis of Titanium Oxide/Carbon Nanotubes-Based Nanocomposites for Hydrogen Sensing Applications,” Journal of Solid State Chemistry, Vol. 183, No. 10, pp. 2451-2455. doi:10.1016/j.jssc.2010.08.018
[71] S. Muduli, W. Lee, V. Dhas, S. Mujawar, M. Dubey, K. Vijayamohanan, S.-H. Han, et al., “Enhanced Conversion Efficiency in Dye-Sensitized Solar Cells based on Hydrothermally Synthesized TiO2-MWCNT Nanocomposites,” ACS Applied Materials Interfaces, Vol. 1, No. 9, 2009, pp. 2030-2035. doi:10.1021/am900396m

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.