Investigation of Element Profiles, Defects, Phase Composition and Physical and Mechanical Properties of Superhard Coatings Ti-Hf-Si-N

Abstract

This paper investigates the microstructure, physical, chemical and mechanical of superhard nanocomposite of Ti-Hf-Si-N. The coatings were grown by C-PVD method. Profiles of elements and vacancy-type defects (S-parameter measurements of the Doppler broadening of the annihilation peak DBAP) in the studied coatings were investigated. Defined and calculated the elastic modulus E, hardness H, friction, adhesion. Wear rate was determined as a function of the bias potential supplied to the substrate and the pressure in the chamber. The developed coatings have hardness of 37.8 to 48 GPa, the friction coefficient of 0.48 to 0.15, the grain size of the solid solution from 3.9 to 10.8 nm (depending on deposition conditions). It was found that positrons are trapped by defects at the junction of three or more nanograins interfaces. In some cases, there was formed two phases in coatings: a solid solution (Ti, Hf)N with different volume content of Hf in a solid solution, and an amorphous phase α-Si3N4 (the layer between the nanograins).

Share and Cite:

A. Pogrebnjak, "Investigation of Element Profiles, Defects, Phase Composition and Physical and Mechanical Properties of Superhard Coatings Ti-Hf-Si-N," Materials Sciences and Applications, Vol. 4 No. 4A, 2013, pp. 24-31. doi: 10.4236/msa.2013.44A004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. F. Zhang, A. S. Argon and S. Veprek, “Electronic Structure, Stability, and Mechanism of the Decohesion and Shear of Interfaces in Superhard Nanocomposites and Heterostructures,” Physical Review B, Vol. 79, No. 24 2009, pp. 245-426. doi:10.1103/PhysRevB.79.245426
[2] J. Musil, J. Vlcek and P. Zeman, “Hard Amorphous Nanocomposite Coatings with Oxidation Resistance above 1000°C,” Advances in Applied Ceramics, Vol. 107, No. 3, 2008, pp. 148-154. doi:10.1179/174367508X306460
[3] A. D. Pogrebnjak, A. P. Shpak, N. A. Azarenkov and V. M. Beresnev, “Structures and Properties of Hard and Superhard Nanocomposite Coatings,” Physics-Uspekhi, Vol. 52, No. 1, 2009, pp. 29-54. doi:10.3367/UFNe.0179.200901b.0035
[4] A. D. Pogrebnjak, A. G. Ponomarev, A. P. Shpak and Yu. A. Kunitskii, “Application of Micro- and Nanoprobes to the Analysis of Small-Sized 3D Materials, Nanosystems, and Nanoobjects,” Physics-Uspekhi, Vol. 55, No. 3, 2012, pp. 270-300. doi:10.3367/UFNe.0182.201203d.0287
[5] A. D. Pogrebnjak, O. V. Sobol, V. M. Beresnev, P. V. Turbin, G. V. Kirik, N. A. Makhmudov, M. V. Il’yashenko, A. P. Shypylenko, M. V. Kaverin, M. Yu. Tashmetov and A. V. Pshyk, “Phase Composition, Thermal Stability, Physical and Mechanical Properties of Superhard on Base Zr-Ti-Si-N Nanocomposite Coatings,” Nanostructured Materials and Nanotechnology IV: Ceramic Engineering and Science Proceedings, Vol. 31, No. 7, 2010, pp.127-138.
[6] A. D. Pogrebnyak, A. G. Ponomarev, D. A. Kolesnikov, V. M. Beresnev, F. F. Komarov, S. S. Mel’nik, and M. V. Kaverin, “Effect of Mass Transfer and Segregation on the Formation of Superhard Nanostructured Ti-Hf-N(Fe) Coatings,” Technical Physics Letters, Vol. 38, No. 7, 2012, pp. 623-626. doi:10.1134/S1063785012070103
[7] W. F. Gale and T. C. Totemeier, “Smithells Metals Reference Book,” Butterworth Heinemann, Oxford, 1976; Metallurgiya, Moscow, 1980.
[8] R. Krause-Rehberg and H. S. Leipner, “Positron Annihilation in Semiconductors,” Springer Verlag, Berlin, 1999, p. 378. doi:10.1007/978-3-662-03893-2
[9] V. I. Grafutin, O. V. Ilyukhina, G. G. Myasishcheva, E. P. Prokopiev, S. P. Timoshenkov, Y. V. Funtikov and R. Burcl, “Positronics and Nanotechnologies: Possibilities of Studying Nanoobjects in Materials and Nanomaterials by the Method of Positron-Annihilation Spectroscopy,” Physics of Atomic Nuclei, Vol. 72, No. 10, 2009, pp. 1672-1681. doi:10.1134/S1063778809100081
[10] J. Kansy, “Programs for Positron Lifetime Analysis Adjusted to the PC Windows Environment,” Materials Science Forum, Vol. 652, 2001, pp. 363-365.
[11] V. I. Grafutin and E. P. Prokop’ev, “Positron Annihilation Spectroscopy in Materials Structure Studies,” Physics-Uspekhi, Vol. 45, No. 1, 2002, pp. 59-74. doi:10.1070/PU2002v045n01ABEH000971
[12] P. Konarski, I. Iwanejko, A. Mierzejewska and R. Diduszko, “Morphology of Working Environment Microparticles,” Vacuum, Vol. 63, No. 4, 2001, pp. 679-683. doi:10.1016/S0042-207X(01)00257-3
[13] P. Konarski, I. Iwanejko and A. Mierzejewska, “SIMS Depth Profiling of Working Environment Nanoparticles,” Applied Surface Science, Vol. 203-204, 2003, pp. 757-761. doi:10.1016/S0169-4332(02)00881-4
[14] A. D. Pogrebnjak, V. M. Beresnev, A. A. Demianenko, V. S. Baidak, F. F. Komarov, M. V. Kaverin, N. A. Makhmudov and D. A. Kolesnikov, “Adhesive Strength, Superhardness, and the Phase and Elemental Compositions of Nanostructured Coatings Based on Ti-Hf-Si-N,” Physics of the Solid State (Russian), Vol. 54, No. 9, 2012, pp. 1882-1890.
[15] A. D. Pogrebnyak, A. P. Shpak, V. M. Beresnev, G. V. Kirik, D. A. Kolesnikov, F. F. Komarov, P. Konarski, N. A. Makhmudov, M. V. Kaverin and V. V. Grudnitskii, “Stoichiometry, Phase Composition, and Properties of Superhard Nanostructured Ti-Hf-Si-N Coatings Obtained by Deposition from High Frequency Vacuum-Arc Discharge,” Technical Physics Letters (Russian), Vol. 37, No. 7, 2011, pp. 636-640.
[16] A. D. Pogrebnjak, M. Danilionok, V. V. Uglov, N. K. Erdybaeva, G. V. Kirik, V. S. Rusakov, A. P. Shypylenko, P. V. Zukovski and Yu. Zh. Tuleushev, “Nanocomposite Protective Coatings on Ti-N-Cr/Ni-Cr-B-Si-Fe, Their Structure and Properties,” Vacuum, Vol. 83, Suppl. 1, 2009, p. 235-239. doi:10.1016/j.vacuum.2009.01.071
[17] A. V. Khomenko and I. A. Lyashenko, “A Stochastic Model of Stick-Slip Boundary Friction with Account for the Deformation Effect of the Shear Modulus of the Lubricant,” Journal of Friction and Wear, Vol. 31, No. 4, 2010, pp. 308-316. doi:10.3103/S1068366610040100
[18] P. Misaelides, A. Hadzidimitrion, F. Noli, E. Pavlidou and A. D. Pogrebnjak, “Investigation of the Characteristics and Corrosion Resistance of Al2O3/TiN Coatings,” Applied Surface Science, Vol. 252, No. 23, 2006, pp. 8043-8049. doi:10.1016/j.apsusc.2005.09.075
[19] A. D. Pogrebnyak, O. V. Sobol’, V. M. Beresnev, P. V. Turbin, S. N. Dub, G. V. Kirik and A. E. Dmitrienko, “Features of the Structural State and Mechanical Properties of ZrN and Zr(Ti)-Si-N Coatings Obtained by Ion-Plasma Deposition Technique,” Technical Physics Letters, Vol. 35, No. 10, 2009, pp. 925-928. doi:10.1134/S1063785009100150
[20] A. D. Pogrebnjak, Sh. M. Ruzimov, D. L. Alontseva, P. Zukowski, C. Karwat, C. Kozak and M. Kolasik, “Structure and Properties of Coatings on Ni Base Deposited Using a Plasma Jet before and after Electron a Beam Irradiation,” Vacuum, Vol. 81, No. 10, 2007, pp. 1243-1251. doi:10.1016/j.vacuum.2007.01.071
[21] A. D. Pogrebnyak, M. M. Danilenok, A. A. Drobyshevskaya, V. M. Beresnev, N. K. Erdybaeva, G. V. Kirik, S. N. Dub, V. S. Rusakov, V. V. Uglov, A. P. Shipilenko and Yu. Zh. Tuleushev, “Investigation of the Structure and Physicochemical Properties of Combined Nanocomposite Coatings Based on Ti-N-Cr/Ni-Cr-B-Si-Fe,” Russian Physics Journal, Vol. 52, No. 12, 2009, pp. 1317-1324. doi:10.1007/s11182-010-9378-1
[22] http://www.iso.org
[23] R. A. Andrievskii, G. V. Kalinnikov, N. Hellgren, P. Sandstrom and D. V. Shtanskii, “Nanoindentation and Strain Characteristics of Nanostructured Boride/Nitride Films,” Physics of the Solid State, Vol. 42, No. 9, 2000, pp. 1671-1674. doi:10.1134/1.1309449

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.