Review Article: Immobilized Molecules Using Biomaterials and Nanobiotechnology

Abstract

Immobilized molecules using biomaterials and nanobiotechnology is a very interesting topic that touching almost all aspects of our life. It uses the sciences of biology, chemistry, physics, materials engineering and computer science to develop instruments and products that are at the cutting edge of some of today’s most promising scientific frontiers. In this review article, the author based on his experience in this arena has tried to focus on some of the supports for im-mobilization; the most important molecules to be immobilized such as DNA, cells, enzymes, metals, polysaccharides, etc and their applications in medicine, food, drug, water treatment, energy and even in aerospace. He specified a special section on what is new in the arena of supports and technologies used in enzyme immobilization and finally a recommendation by the author for future work with a special attention to up-to-date references.

Share and Cite:

M. M. M. Elnashar, "Review Article: Immobilized Molecules Using Biomaterials and Nanobiotechnology," Journal of Biomaterials and Nanobiotechnology, Vol. 1 No. 1, 2010, pp. 61-77. doi: 10.4236/jbnb.2010.11008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Buyukgungor H, Gurel L (2009) .The role of biotechnology on the treatment of wastes. African J. Biotechnol. 8, 7253.
[2] Yu-Qung ZT, Mei-Lin S, Wei-De Z, Yu-Zhen D, Yue M, Wen-Ling Z (2004). Immobilization of L-asparaginase of the microparticles of the natural silk serum protein and its characters. Biomaterials. 25, 3151.
[3] Kierek-Pearson K, Karatan E (2005) Biofilm development in bacteria. Adv. Appl. Microbiol. 57, 79.
[4] Carpentier B, Cerf O (1993). Biofilms and their consequences, with particular reference to hygiene in the food industry. J. Appl. Bacteriol. 75, 499.
[5] Cao L, Schmid RD (2005). Carrier-bound Immobilized Enzymes: Principles, Application and Design. WILEY- VCH Verlag GmbH & Co. Weinheim.
[6] Ayala M. Torres E. (2004). Enzymatic activation of alkanes: constraints and prospective. Appl. Catal. A: General. 272, 1.
[7] Danial EN, Elnashar MM, Awad GE (2010). “Immobilized Inulinase on Grafted Alginate Beads Prepared by the One-Step and the Two-Steps Methods”. Indus. Eng. Chem. Res. 49, 3120.
[8] Elnashar MM (2010). Chapter in a book entitled “Low-cost Foods and Drugs Using Immobilized Enzymes on Biopolymers”, Book entitled Biopolymers, published by www.sciyo.com (In Press).
[9] Elnashar MM, Yassin AM, Kahil T (2008). Novel thermally and mechanically stable hydrogel for enzyme immobilization of penicillin G acylase via covalent technique. J. Appl. Polym. Sci. 109, 4105.
[10] Elnashar MM, Danial EN, Awad GE (2009). “Novel Carrier of Grafted Alginate for Covalent Immobilization of Inulinase”. Indus. Eng. Chem. Res. 48, 9781.
[11] Elnashar MM, Yassin AM, Abdel Moneim AA, Abdel Bary EM (2010). Surprising Performance of Alginate Beads for the Release of Low Molecular Weight Drugs. J. Appl. Polym. Sci. 116, 3021-3126.
[12] Elnashar MM, Yassin AM (2009a). “Covalent immobilization of β-galactosidase on carrageenan coated chitosan”. J. Appl. Polym. Sci. 114, 17.
[13] Elnashar MM, Yassin AM (2009b). Lactose Hydrolysis by β-Galactosidase Covalently Immobilized to Thermally Stable Biopolymers. J. Appl. Biochem. Biotechnol. 159, 426.
[14] Mansour ME, Elnashar MM, Hazem ME (2007). “Amphoteric hydrogels using template polymerization technique”. J. Appl. Polym. Sci. 106, 3571.
[15] Katzbauer B, Narodoslawsky M, Moser A (1995). Classification system for immobilization techniques. Bioprocess Eng. 12, 173.
[16] Tosa T, Mori T, Fuse N, Chibata I (1967). Studies on continuous enzyme reactions Part V Kinetics and industrial application of aminoacylase column for continuous optical resolution of acyl-dl amino acids. Biotechnol Bioeng, 9, 603.
[17] Menaa B, Torres C, Herrero M, Rives V, Gilbert ARW, Eggers DK (2008a) Protein adsorption to organically- modified silica glass leads to a different structure than sol-gel encapsulation. Biophys. J., 95, 51.
[18] ?etinus S, Sahin E, Saraydin D (2009) Preparation of Cu(II) adsorbed Chitosan beads for catalase immobilization. Food Chem. 114, 962.
[19] Xie T., Wang A., Huang L., Li H., Chen Z., Wang Q., and Yin X. (2009) Review: Recent advance in the support and technology used in enzyme immobilization Afr. J. Biotechnol. 8, 4724.
[20] Bickerstaff GF (1995) Impact of genetic technology on enzyme technology. Genet. Eng. Biotechnol. 15, 13.
[21] Riaz A, Qader S, Anwar A, Iqbal S (2009) Immobilization of a Thermostable á-amylase on Calcium Alginate Beads from Bacillus Subtilis KIBGE-HAR. Aust. J. Basic & Appl. Sci. 3, 2883.
[22] Groboillot A, Boadi DK, Poncelot D, Neufled RJ (1994). Immobilization of cells for application in the food industry. Crit. Rev. Biotechnol. 14, 75.
[23] Patil JS, Kamalapur MV, Marapur SC, Kadam DV (2010) Ionotropic gelation and polyelectrolyte complexation: The novel techniques to design hydrogel particulate sustained, modulated drug delivery system: A Review. Digest J. Nanomat. Biostruct. 5, 241.
[24] Menaa B, Herrero M, Rives V, Lavrenko M, Eggers DK (2008b) Favorable influence of hydrophobic surfaces on protein structure in porous organically-modified silica glasses. Biomaterials, 29, 2710-2718.
[25] Menaa B, Miyagawa Y, Takahashi M, Herrero M, Rives V, Menaa F, Eggers DK (2009) Bioencapsulation of apomyoglobin in nanoporous organosilica sol-gel glasses: influence of the siloxane network on the conformation and stability of a model protein. Biopolymers, 91, 895-906.
[26] Menaa B, Menaa F, Aiolfi-Guimaraes C, Sharts O (2010) Silica-based nanoporous sol-gel glasses: from bioencapsulation to protein folding studies. Internatl. J. NanotechNol. 7, 1-45.
[27] Elnashar MM (2005). Ph.D. thesis entitled Development of a Novel Matrix for the Immobilization of Enzymes for Biotechnology. Leeds University, UK.
[28] Elnashar MM, Millner PA, Johnson AF, Gibson TD (2005). Parallel plate equipment for preparation of uniform gel sheets. Biotechnol. Lett. 27, 737.
[29] Lin CC, Metters AT (2006). Hydrogels in controlled release formulations: network design and mathematical modeling, Adv. Drug Deliv. Rev. 58, 1379.
[30] Pollauf EJ, Pack DW (2006). Use of thermodynamic parameters for design of double-walled microsphere fabrication methods. Biomaterials. 27, 2898.
[31] Pack DW, Hoffman AS, Pun S, Stayton PS, (2005). Design and development of polymers for gene delivery, Nat. Rev. Drug Discov. 4, 581.
[32] Grayson ACR, Choi IS, Tyler BM, Wang PP, Michael BH (2003). Multi-pulse drug delivery from a resorbable polymeric microchip device, Nat. Mater. J. Cima. 2, 767.
[33] Kim YH, Kwon IC, Bae YH, Kim SW (1995) Saccharide effect on the cloud point of thermosensitive polymers, Macromolecules. 28, 939.
[34] Sona P (2010). Nanoparticulate drug delivery systems for the treatment of diabetes. Digest J. Nanomat. Biostruct. 5, 441.
[35] Yu M, Jeong Y, Park J, Park S, Kim J, Min J, Kim K, Jon S (2008). Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed., 47, 5362.
[36] Kettering M, Zorn H, Bremer-Streck S, Oehring H, Zeisberger M, Bergemann C, Hergt R, Halbhuber J, Kaiser A, Hilger I (2009) Characterization of iron oxide nanoparticles adsorbed with cisplatin for biomedical applications. Phys. Medicine Biol. 54, 5109.
[37] Farre, M.; Kuster, M.; Brix, R.; Rubio, F.; Alda, M.-J. L. d.; Barcelo, D. (2007) Comparative study of an estradiol enzyme-linked immunosorbent assay kit, liquid chromatography-tandem mass spectrometry, and ultra performance liquid chromatography-quadrupole time of flight mass spectrometry for part-per-trillion analysis of estrogens in water samples. J. Chromatog. A. 1160, 166.
[38] Xin T, Wang X, Jin H,Liang S, Lin J, Li Z (2009). Development of magnetic particle-based chemiluminescence enzyme immunoassay for the detection of 17β-estradiol in environmental water. Appl. Biochem. Biotechnol. 158, 582.
[39] World Health Organization (WHO), (2002). HIV simple/rapid assays: Operational characteristics (phase I). In Google: http://www.who.int/3by5/en/simplerapidassays.pdf
[40] Ogaki M, Sonomoto K, Nakajima H, Tanaka A (1986). Continuous production of oxytetracycline by immobilized growing Streptomyces rimosus cells. Appl. Microbiol. Biotechnol. 24, 6.
[41] Piskin AK (1993). Therapeutic potential of immobilized enzymes. NATO ASI Series, Ser E. 252,191.
[42] Soetan K, Aiyelaagbe O, Olaiya C (2010). Review of the biochemical, biotechnological and other applications of enzymes. Afr. J. Biotechnol. 9, 382.
[43] Ordo?ez JA, Cambero MA, Fernandez L, Garcia ML, Garcia G, Hoz L (1998). Componentes de los alimentos y procesos. Tecnologia de los alimentos (Vol. I.). Madrid, Spain: Editorial Sintesis.
[44] Richmond M, Gray J. Stine C (1981). Beta-galactosidase: Review of recent research related to technological application, nutritional concerns, and immobilization. J. dairy sci. 1759, 64.
[45] German JH (1997). Applied enzymology of lactose hydrolysis. In Milk powders for the future, pp. 81.
[46] Sungur S, Akbulut U (1994). Immobilization of β-galactosidase onto gelatin by glutaraldehyde and chromium(III) acetate. J. Chem. Technol. Biotechnol. (Oxford, Oxfordshire) 59, 303.
[47] Gill P, Manhas R, Singh P (2006). Hydrolysis of inulin by immobilized thermostable extracellular exoinulinase from Aspergillus fumigatus. J. Food Eng. 76, 369.
[48] Giovagnoli S (2004). Biodegradable Micropheres as carriers for native Superoxide Dismutase and Catalase delivery. AAPS Pharm. Sci. Tech. 5, 51.
[49] Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG (2002). Identification of an (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68, 3371.
[50] Sharmin F, Rakshit S, Jayasuriya H (2007). “Enzyme mmobilization on Glass surfaces for the development of Phosphate detection Biosensors”. Agricultural Engineering International: the CIGR Ejournal. Manuscript FP 06 019. Vol. IX. April.
[51] Ackerman E, Lei C (2008). Immobilizing enzymes for useful service. http//www.google. 19.11.2008.
[52] Hand book from GE Healthcare (2007) Purifying challenging proteins: principles and methods. Publisher: General Electric Co.
[53] Hermanson G, Mallia A, Smith P (1992). Immobilized affinity ligand techniques. Academic Press Incorporation.
[54] Sun X, Ph.D. (2009). Thesis entitled “Polymeric microfluidic devices for bioanalysis”, Brigham Young University, China.
[55] Delair T, Meunier F (1999). Amino-containing cationic latex oligo-conjugates: application to diagnostic test sensitivity enhancement, Colloids Surf. 153, 341.
[56] Kemshead JT, Treleaven JG, Gibson FM, Ugallstad J, Rembaum A, Philip T (1985). Removal of malignant cells from marrow using magnetic microspheres and monoclonal antibodies, Prog. Exp. Tumor Res. 29, 249.
[57] Langer R (1990). New methods of drug delivery. Science. 249, 1527.
[58] Andreadis JD, Chrisey LA (2000). Use of immobilized PCR primer to generate covalently immobilized DNAs for in vitro transcription/translation reaction, Nucleic Acids Res. 28, e5.
[59] Myrmel M, Rimstad E, Wasteson Y (2000). IMS of Norwalk-like virus (geno group I) in artificially contaminated environmental water samples, Int. J. Food Microbiol. 62, 17.
[60] Ding X, Jiang Y (2000). Adsorption/desorption of protein on magnetic particles covered by thermosensitive polymers, J. Appl. Polym. Sci. 278, 459.
[61] Rouquier S, Tracks BJ (1995). Direct selection of cDNAs using whole chromosomes. Nucleic Acids Res. 21, 4415.
[62] Krupey J (1994). Water insoluble cross-linked acid composition, U.S. Patent 5,294,681.
[63] Ifiata A, Satoh K, Murata M, Hikata M, Hayakawa T, Yamaguchi T (2003). Virus concentration using sulfonated magnetic beads to improve sensitivity in nucleic acid amplification tests. Biol. Pharm. Bull. 26, 1065.
[64] Abdel Hameed M, Ebrahim O (2007). Review: Biotechnological potential uses of immobilized algae. Int. J. Agri. Biol. 9, 183.
[65] Shareef K (2009). Sorbents for contaminents uptake from aqueous solutions. Part 1 Heavy metals. World J. Agricul. Sci. 5, 819.
[66] Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L (2004). Nanotechnology and biosensors. Biotechnol. Adv. 22, 505.
[67] Rodriguez-Mozaz S, Reder S, Lopez de Alda MJ, Gauglitz G, Barcelo D. (2004). Simultaneous multi-analyte determination of estrone, isoproturon and atrazine in natural waters by the RIver ANAlyser (RIANA), an optical immunosensor. Biosens. Bioelectron. 19, 633.
[68] Nistor C, Rose A, Farre M, Stocia L, Wollenberger U, Ruzgas T, Pfeiffer D, Barcelo D, Gorton L, Emneus J (2002). In-field monitoring of cleaning efficiency in waste water treatment plants using two phenol-sensitive biosensors. Analytica Chimica Acta. 456, 3.
[69] Philp JC, Balmand S, Hajto E, Bailey MJ, Wiles S, Whiteley AS, Lilley AK, Hajto J, Dunbar SA (2003). Whole cell immobilized biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste. Analytica Chimica Acta 487, 61.
[70] Petanen T, Romantschuk M (2002). Use of bioluminescent bacterial biosensors as an alternative method for measuring heavy metals in soil extracts. Analytica Chimica Acta 456, 55.
[71] Marrazza G, Chianella I, Mascini M (1999). Disposable DNA electrochemical biosensors for environmental monitoring. Analytica Chimica Acta. 387, 297.
[72] Sawayama S, Inoue S, Dote Y, Yokoyama SY (1995). CO2 fixation and oil production through microalga. Energy Convers. Manag. 36, 729.
[73] Gavrilescu M, Chisti Y (2005). Biotechnology: a sustainable alternative for chemical industry. Biotechnol. Adv. 23, 471.
[74] Biodiesel: Biodiesel Review (2006). In Google: http://www.sipef.be/pdf/biodiesel_presentation.pdf
[75] Meher LC, Sagar DV, Naik SN (2006). Technical aspects of biodiesel production by transesterification - a review. Ren. Sustain. Energ. Rev. 10, 248.
[76] Sharma R, Chisti Y, Banerjee UC (2001). Production, purification, characterization, and applications of lipases. Biotechnol Adv. 19, 627.
[77] Fukuda H, Kondo A, Noda H (2001). Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 92, 405.
[78] Pedersen S, Christensen MW (2000). Immobilized biocatalysts. Applied biocatalysis. P. Adlercreutz. Amsterdam, Harwood Academic Publishers: 213-228.
[79] Salis A, Sanjust E, Solinas V, Monduzzi M (2005). Commercial lipase immobilization on Accurel MP1004 porous polypropylene. Biocatal. Biotransf. 23, 381.
[80] Chang HM, Liao HF, Lee CC, Shieh CJ (2005). Optimized synthesis of lipase-catalyzed biodiesel by Novozym 435. J. Chem. Technol. Biotechnol. 80, 307.
[81] De Oliveira D, Di Luccio M, Faccio C, Rosa CD, Bender JP, Lipke N, Menoncin S, Amroginski C, De Oliveira JV (2004). Optimization of enzymatic production of biodiesel from castor oil in organic solvent medium. Appl. Biochem. Biotechnol. 113-116, 771-780.
[82] Kminek G. Bada JL (2006). The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet. Sci. Letters. 245, 1-5.
[83] Barron LD (2008). Chirality and life. Space Sci. Rev.135, 187.
[84] Hutt LD, Glavin DP, Mathies RA (1999). Microfabricated Capillary Electrophoresis Amino Acid Chirality Analyzer for Extraterrestrial Exploration. Anal. Chem. 71, 4000.
[85] Exomars mission conference (2005). In Google: http:// www.aurora.rl.ac.uk/Report_of_Pasteur_9_Sept. pdf.
[86] Cao L, Schmidt. (2005). Immobilized enzymes: science or art? Curr. Opinion Chem. Biol. 9, 217.
[87] Chen B, Miller ME, Gross RA (2007a). Effects of porous polystyrene resin parameters on Candida antarctica lipase B adsorption, distribution, and polyester synthesis activity. Langmuir. 23, 6467.
[88] Kim MI, Kim J, Lee J, Jia H, Bin Na H, Youn JK, Kwak JH, Dohnalkova A, Grate JW, Wang P (2007). Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnol. Bioeng. 96, 210.
[89] Rosales-Hernandez MC, Mendieta-Wejebe JE, Correa-Basurto J, Vazquez-Alcantara JI, Terres-Rojas E, Trujillo-Ferrara J (2007). Catalytic activity of acetylcholinesterase immobilized on mesoporous molecular sieves. Int. J. Biol. Macromol. 40, 444.
[90] Wang AM, Zhou C, Wang H, Shen SB, Xue JY, Ouyang PK (2007). Covalent Assembly of Penicillin Acylase in Mesoporous Silica Based on Macromolecular Crowding Theory. Chin. J. Chem. Eng. 15, 788.
[91] Wang A, Wang H, Zhu S, Zhou C, Du Z, Shen S (2008a). An efficient immobilizing technique of penicillin acylase with combining mesocellular silica foams support and p-benzoquinone cross linker. Bioprocess Biosyst. Eng. 31, 509.
[92] Boller T, Meier C, Menzler S (2002). Eupergit oxirane acrylic beads: How to make enzymes fit for biocatalysis. Org. Process Res. Dev. 6, 509.
[93] Chong ASM, Zhao XS (2004). Design of large-pore mesoporous materials for immobilization of penicillin G acylase biocatalyst. Catal. Today, 93-95, 293.
[94] Lei CH, Shin YS, Liu J, Ackerman EJ (2002). Entrapping enzyme in a functionalized nanoporous support. J. Am. Chem. Soc. 124, 11242.
[95] Wang AM, Liu MQ, Wang H, Zhou C, Du ZQ, Zhu SM, Shen SB, Ouyang PK (2008b). Improving enzyme immobilization in mesocellular siliceous foams by microwave irradiation. J. Biosci. Bioeng. 106, 286.
[96] Cheung MS, Thirumalai D (2006). Nanopore-protein interactions dramatically alter stability and yield of the native state in restricted spaces. J. Mol. Biol. 357, 632.
[97] Szamocki R, Velichko A, Mucklich F, Reculusa S, Ravaine S, Neugebauer S, Schuhmann W, Hempelmann R, Kuhn A (2007). Improved enzyme immobilization for enhanced bioelectrocatalytic activity of porous electrodes. Electrochem. commun. 9, 2121.
[98] Chen RJ, Zhang YG, Wang DW, Dai HJ (2001). Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838.
[99] Wan LS, Ke BB, Xu ZK (2008). Electrospun nanofibrous membranes filled with carbon nanotubes for redox enzyme immobilization. Enz. Microb. Technol. 42, 332.
[100] Bayramoglu G, Kiralp S, Yilmaz M, Toppare L, Arica MY (2008). Covalent immobilization of chloroperoxidase onto magnetic beads: Catalytic properties and stability. Biochem. Eng. J. 38, 180.
[101] Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi K, Ulman A, Cowman M, Gross RA (2003). Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles. J. Am. Chem. Soc. 125, 1684.
[102] Liu XQ, Guan YP, Shen R, Liu HZ (2005). Immobilization of lipase onto micron-size magnetic beads. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 822, 97.
[103] Sadasivan S, Sukhorukov GB (2006). Fabrication of hollow multifunctional spheres containing MCM-41 nano- particles and magnetite nanoparticles using layer-by- layer method. J. Colloid. Interface Sci. 304, 437.
[104] Kim J, Lee J, Na HB, Kim BC, Youn JK, Kwak JH, Moon K, Lee E, Park J, Dohnalkova A (2005). A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. Small. 1, 1203.
[105] Hegedus I, Nagy E (2009). Improvement of chymotrypsin enzyme stability as single enzyme nanoparticles. Chem. Eng. Sci. 64, 1053.
[106] Yan M, Ge J, Liu Z, Ouyang PK (2006). Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J. Am. Chem. Soc. 128, 11008.
[107] Kim J, Grate JW (2003). Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett. 3, 1219.
[108] Tanaka Y, Tsuruda Y, Nishi M, Kamiya N, Goto M (2007). Exploring enzymatic catalysis at a solid surface: a case study with transglutaminase-mediated protein immobilization. Org. Biomol. Chem. 5, 1764.
[109] Wong LS, Thirlway J, Micklefield J (2008). Direct site-selective covalent protein immobilization catalyzed by a phosphopantetheinyl trans ferase. J. Am. Chem. Soc. 130, 12456.
[110] Buchholz K (1979). Non uniform enzyme distribution inside carriers. Biotechnol. Lett. 1, 451.
[111] Chen B, Miller EM, Miller L, Maikner JJ, Gross RA (2007b). Effects of macroporous resin size on Candida antarctica lipase B adsorption, fraction of active molecules, and catalytic activity for polyester synthesis. Langmuir. 23, 1381.
[112] Van Langen LM, Janssen MHA, Oosthoek NHP, Pereira SRM, Svedas VK, van Rantwijk F, Sheldon RA (2002). Active site titration as a tool for the evaluation of immobilization procedures of penicillin acylase. Biotechnol. Bioeng. 79, 224.
[113] Wang AM, Zhou C, Liu MQ, Du ZQ, Zhu SM, Shen SB, Ouyang PK (2009a). Enhancement of microwave-assisted covalent immobilization of penicillin acylase using macromolecular crowding and glycine quenching. J. Biosci. Bioeng. 107, 219.
[114] Naqvi A, Nahar P (2004). Photochemical immobilization of proteins on microwave-synthesized photoreactive polymers. Anal. Biochem. 327, 68.
[115] Kumar S, Nahar P (2007). Sunlight-induced covalent immobilization of proteins. Talanta. 71, 1438.
[116] Rogers RD, Seddon KR (2003). Ionic liquids-Solvents of the future? Science, 302, 793.
[117] Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003). Controlling the aqueous miscibility of ionic liquids: Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J. Am. Chem. Soc. 125, 6632.
[118] Rumbau V, Marcilla R, Ochoteco E, Pomposo JA, Mecerreyes D (2006). Ionic liquid immobilized enzyme for biocatalytic synthesis of conducting polyaniline. Macromolecules. 39, 8547.
[119] Sheldon RA, Lau RM, Sorgedrager MJ, Van Rantwijk F, Seddon KR (2002). Biocatalysis in ionic liquids. Green Chem. 4, 147.
[120] Van Rantwijk F, Lau RM, Sheldon RA (2003). Biocatalytic transformations in ionic liquids. Trends Biotechnol. 21, 131.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.