Flexible Graphene Devices with an Embedded Back-Gate

Abstract

We show the fabrication of flexible graphene devices with an embedded backgate. The resistance of these devices can be tuned by changing the strain through the bending of the substrate. These devices can be useful for applications requiring a flexible graphene-based field effect transistor in where the graphene channel is not covered (such as biological or chemical sensors and photo-detectors).  

Share and Cite:

J. Veen, A. Gomez, H. van der Zant and G. Steele, "Flexible Graphene Devices with an Embedded Back-Gate," Graphene, Vol. 2 No. 1, 2013, pp. 13-17. doi: 10.4236/graphene.2013.21003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, et al., “Two-Dimensional Atomic Crystals,” Proceedings of the National Academy of Sciences, Vol. 102, No. 30, 2005, pp. 10451-10453. doi:10.1073/pnas.0502848102
[2] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novo- selov and A. K. Geim, “The Electronic Properties of Gra- phene,” Reviews of Modern Physics, Vol. 81, No. 1, 2009, p. 109.
doi:10.1103/RevModPhys.81.109
[3] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, et al., “Room-Temperature Quantum Hall Effect in Graphene,” Science, Vol. 315, No. 5817, 2007, p. 1379. doi:10.1126/science.1137201
[4] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, et al., “Detection of Individual Gas Molecules Adsorbed on Graphene,” Nature Materials, Vol. 6, No. 9, 2007, pp. 652-655. doi:10.1038/nmat1967
[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, et al., “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, 2004, pp. 666-669. doi:10.1126/science.1102896
[6] Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, et al., “Operation of Graphene Transistors at Gigahertz Frequencies,” Nano Letters, Vol. 9, No. 1, 2008, pp. 422-426. doi:10.1021/nl803316h
[7] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Far- mer, H,-Y Chiu, et al., “100-GHz Transistors from Wa- fer-Scale Epitaxial Graphene,” Science, Vol. 327, No. 5966, 2010, p. 662.
doi:10.1126/science.1184289
[8] Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D. B. Farmer, I. Meric, et al., “Wafer-Scale Graphene Integrated Circuit,” Science, Vol. 332, No. 6035, 2011, pp. 1294-1297. doi:10.1126/science.1204428
[9] I. W. Frank, D. M. Tanenbaum, A. M. Van der Zande, and P. L. McEuen, “Mechanical Properties of Suspended Graphene Sheets,” Journal of Vacuum Science & Tech- nology B: Microelectronics and Nanometer Structures, Vol. 25, No. 6, 2007, pp. 2558-2561. doi:10.1116/1.2789446
[10] C. Lee, X. Wei, J. W. Kysar and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Mono- layer Graphene,” Science, Vol. 321, No. 5887, 2008, pp. 385-388.
doi:10.1126/science.1157996
[11] C. Gómez-Navarro, M. Burghard and K. Kern, “Elastic Properties of Chemically Derived Single Graphene Sheets,” Nano Letters, Vol. 8, No. 7, 2008, pp. 2045-2049. doi:10.1021/nl801384y
[12] M. Poot, and H. S. J. Van der Zant, “Nanomechanical Properties of Few-Layer Graphene Membranes,” Applied Physics Letters, Vol. 92, No. 6, 2008, Article ID: 063111. doi:10.1063/1.2857472
[13] T. Low and F. Guinea, “Strain-Induced Pseudo-Magnetic Field for Novel Graphene Electronics,” Nano Letters, Vol. 10, No. 9, 2010, pp. 3551-3554. doi:10.1021/nl1018063
[14] F. Guinea, A. K. Geim, M. I. Katsnelson and K. S. No- voselov, “Generating Quantizing Pseudomagnetic Fields by Bending Graphene Ribbons,” Physical Review B, Vol. 81, No. 3, 2010, Article ID: 035408. doi:10.1103/PhysRevB.81.035408
[15] F. Guinea, M. I. Katsnelson and A. K. Geim, “Energy Gaps and a Zero-Field Quantum Hall Effect in Graphene by Strain Engineering,” Nature Physics, Vol. 6, No. 1, 2009, pp. 30-33. doi:10.1038/nphys1420
[16] P. R. Chidambaram, C. Bowen, S. Chakravarthi, C. Ma- chala and R. Wise, “Fundamentals of Silicon Material Properties for Successful Exploitation of Strain Engi- neering in Modern CMOS Manufacturing,” IEEE Trans- actions on Electron Devices, Vol. 53, No. 5, 2006, pp. 944-964. doi:10.1109/TED.2006.872912
[17] G. Eda, G. Fanchini and M. Chhowalla, “Large-Area Ultrathin Films of Reduced Graphene Oxide as a Trans- parent and Flexible Electronic Material,” Nature Nano- technology, Vol. 3, No. 5, 2008, pp. 270-274. doi:10.1038/nnano.2008.83
[18] Y.-H. Lee and Y.-J. Kim, “Electrical and Lattice Vibra- tional Behaviors of Graphene Devices on Flexible Sub- strate Under Small Mechanical Strain,” Applied Physics Letters, Vol. 101, No. 8, 2012, Article ID: 083102. doi:10.1063/1.4746285
[19] T. Yoon, W. C. Shin, T. Y. Kim, J. H. Mun, T. S. Kim, et al., “Direct Measurement of Adhesion Energy of Mono- layer Graphene as-Grown on Copper and Its Application to Renewable Transfer Process,” Nano Letters, Vol. 12, No. 3, 2012, pp. 1448-1452. doi:10.1021/nl204123h
[20] J. Lee, L. Tao, K. N. Parrish, H. Yufeng, R. S. Ruoff, et al., “Highly Bendable High-Mobility Graphene Field Ef- fect Transistors with Multi-Finger Embedded Gates on Flexible Substrates,” Nanotechnology (IEEE-NANO), 2012, in Press.
[21] Y. Lee, S. Bae, H. Jang, S. Jang, S. Zhu, et al., “Wafer- Scale Synthesis and Transfer of Graphene Films,” Nano Letters, Vol. 10, No. 2, 2010, pp. 490-493. doi:10.1021/nl903272n

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.