Processing of 5083 Aluminum Alloy Reinforced with Alumina through Microwave Sintering

Abstract

Today, there is an increasing demand worldwide for the advanced materials in order to obtain the desired properties. This is because a single material generally cannot meet the requirement of harsh engineering environment that is why the need for composites arises. Metal matrix composite is an important class of materials with high potential for structural applications requiring high specific modulus, strength and toughness. Metal matrix composites with unique properties are growing every day and widely used in different industries because of their high mechanical properties and wear resistance.

Share and Cite:

J. Verma, A. Kumar, R. Chandrakar and R. Kumar, "Processing of 5083 Aluminum Alloy Reinforced with Alumina through Microwave Sintering," Journal of Minerals and Materials Characterization and Engineering, Vol. 11 No. 11, 2012, pp. 1126-1131. doi: 10.4236/jmmce.2012.1111121.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Kok, “Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminium Alloy Composites,” Journal of Materials Processing Technology, Vol. 161, No. 3, 2005, pp. 381-387. doi:10.1016/j.jmatprotec.2004.07.068
[2] J. M. Torralba, C. E. daCost and F. Velasco, “P/M Aluminum Matrix Composites: An Overview,” Journal of Materials Processing Technology, Vol. 133, No. 1-2, 2003, pp. 203-206. doi:10.1016/S0924-0136(02)00234-0
[3] L. A. Dobrzanski, A. WEodarczyk and M. Adamiak, “Struc- ture and Properties of PM Composite Materials Based on EN AW-2124 Aluminum Alloy Reinforced with the BN or Al2O3 Ceramics Particles,” Journal of Materials Processing Technology, Vol. 175, No. 1-3, 2006, pp. 186-191.
[4] B. G. Park, A. G. Crosky and A. K. Hellier, “Material Char- acterisation and Mechanical Properties of Al2O3-Al Metal Matrix Composites,” Journal of Materials Science, Vol. 36, No. 10, 2001, pp. 2417-2426. doi:10.1023/A:1017921813503
[5] A. Slipenyuk, V. Kuprin, Y. Milman, V. Goncharuk and J. Eckert, “Properties of P/M Processed Particle Reinforced Metal Matrix Composites Specified by Reinforcement Concentration and Matrix-to-Reinforcement Particle Size Ratio,” Acta Materialia, Vol. 54, No. 1, 2006, pp. 157- 166. doi:10.1016/j.actamat.2005.08.036
[6] W. H. Sutton, “Microwave Processing of Ceramic Materials,” American Ceramic Society Bulletin, Vol. 68, No. 2, 1989, pp. 376-386.
[7] S. Das, A. K. Mukhopadhyay, S. Datta and D. Basu, “Prospects of Microwave Processing: An Overview,” Bulletin of Materials Science, Vol. 31, No. 7, 2008, pp. 943-956. doi:10.1007/s12034-008-0150-x
[8] J. W. Kaczmar, K. Pietrzak and W. Wosinski, “The Production and Application of Metal Matrix Composite Materials,” Journal of Materials Processing Technology, Vol. 106, No. 1-3, 2000, pp. 58-67. doi:10.1016/S0924-0136(00)00639-7
[9] N. H. Loh, S. B. Tor and K. A. Khor, “Production of Metal Matrix Composite Part by Powder Injection Mol- ding,” Journal of Materials Processing Technology, Vol. 108, No. 3, 2001, pp. 398-407. doi:10.1016/S0924-0136(00)00855-4
[10] P. Yadogi, R. Peelamedu, D. Agrawal and R. Roy, “Microwave Sintering of Ni-Zn Ferrites: Comparison with Conventional Sintering,” Materials Scisence and Engineering B, Vol. 98, 2003, pp. 269-278.
[11] D. E. Clark, D. C. Folz and J. K. West, “Processing Materials with Microwave Energy,” Materials Science and Engineering: A, Vol. 287, No. 2, 2000, pp. 153-158. doi:10.1016/S0921-5093(00)00768-1
[12] D. E. Clark, D. C. Folz and J. K. West, “Processing Materials with Microwave Energy,” Materials Science and Engineering: A, Vol. 287, No. 2, 2000, pp. 153-158. doi:10.1016/S0921-5093(00)00768-1
[13] C. Leonali, P. Veronasi, L. Denti, A. Gatto and L. luliano, “Microwave Assisted Sintering of Green Metal Parts,” Journals of Materials Processing Technology, Vol. 205, No. 1-3, 2008, pp. 489-496.
[14] R. R Meneges, “R.H.G.A. Kiminami, Microwave Hybrid Fast Sintering of Porcelain Bodies,” Journals of Materials Processing Technology, Vol. 190, 2007, pp. 223-229.
[15] D. Agrawal, International Symposium Advance Processing of Metals and Materials, Vol. 4, 2006, pp. 183-189.
[16] K. E. Haque, “Microwave Energy for Mineral Treatment Processes—A Review,” International Journals of Minerals Processing, Vol. 57, No. 1, 1999, pp. 1-24.
[17] Y. Soydan and L. Ulukan, TAGEM-Technological Publications, Laredo, 2003.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.