Protective Effects of Nobiletin on Hypertension and Cerebral Thrombosis in Stroke-Prone Spontaneously Hypertensive Rats (SHRSP)

Abstract

Some citrus flavonoids have been reported to possess antioxidant activities that moderate endothelial dysfunction and show protective effects on cardiovascular disease. We have investigated the protective effects of nobiletin (5,6,7,8,3’,4’-hexamethoxy flavone) derived from the peel of Citrus depressa Hayata (Shiikuwasha), a citrus fruit produced in Okinawa prefecture in Japan on hypertension and thrombogenicity in cerebral vessels of stroke-prone spontaneously hypertensive rats (SHRSP). Nobiletin was added to the diet of male SHRSP (7 weeks old) for 4 weeks. The age-related increase in systolic blood pressure usually observed in SHRSP was significantly suppressed in the treated animals. Thrombogenesis in pial blood vessels, determined using a He-Ne laser technique, and antioxidant activity, assessed by measuring urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG), were significantly reduced after treatment. Urinary nitric oxide (NO) metabolites and acetylcholine-induced endothelial relaxation were increased after dietary intervention. These results strongly suggested that antihypertensive and antithrombotic effects of nobiletin may be related to an increase in bioavailable NO, possibly mediated by the scavenging of reactive oxygen species (ROS).

Share and Cite:

M. Ikemura, Y. Sasaki, J. Giddings and J. Yamamoto, "Protective Effects of Nobiletin on Hypertension and Cerebral Thrombosis in Stroke-Prone Spontaneously Hypertensive Rats (SHRSP)," Food and Nutrition Sciences, Vol. 3 No. 11, 2012, pp. 1539-1546. doi: 10.4236/fns.2012.311201.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Nogata, K. Sakamoto, H. Shiratsuchi, T. Ishii, M. Yano and H. Ohta, “Flavonoid Composition of Fruit Tissues of Citrus Species,” Bioscience, Biotechnology, Biochemistry, Vol. 70, No. 1, 2006, pp. 178-192. doi:10.1271/bbb.70.178
[2] E. J. Middleton, C. Kandaswami and T. C. Theoharides, “The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer,” Pharmacological Reviews, Vol. 52, No.4, 2000, pp. 673-751.
[3] A. Murakami, Y. Nakamura, Y. Ohto, M. Yano, T. Koshiba, K. Koshimizu, H. Tokuda, H. Nishino and H. Ohigashi, “Suppressive Effects of Citrus Fruits on Free Radical Generation and Nobiletin, an Anti-inflammatory Polymethoxyflavonoid,” Biofactors, Vol. 12, No. 1-4, 2000, pp. 187-192. doi:10.1002/biof.5520120130
[4] H. Nishino, H. Tokuda, Y. Satomi, M. Masuda, Y. Osaka, S. Yogosawa, S. Wada, X. Y. Mou, J. Takayasu, M. Murakoshi, K. Jinnno and M. Yano, “Cancer Prevention by Antioxidants,” Biofactors, Vol. 22, No. 1-4, 2004, pp. 57-61. doi:10.1002/biof.5520220110
[5] Y. H. Lu, M. Y. Su, H. Y. Huang, Lin-Li and C. G. Yuan, “Protective Effects of the Citrus Flavanones to PC12 Cells against Cytotoxicity Induced by Hydrogen Peroxide,” Neuroscience Letters, Vol. 484, No. 1, 2010, pp. 6-11. doi:10.1016/j.neulet.2010.07.078
[6] O. Benavente-Garcia and J. Castillo, “Update on Uses and Properties of Citrus Flavonoids: New Findings in Anticancer, Cardiovascular, and Anti-inflammatory Activity,” Journal of Agricultural and Food Chemistry, Vol. 56, No. 15, 2008, pp. 6185-6205. doi:10.1021/jf8006568
[7] R. Gonzalez, I. Ballester, R. Lopez-Posadas, M. D. Suarez, A. Zarzuelo, O. Martinez-Augustin and F. Sanchez de Medina, “Effects of Flavonoids and Other Polyphenols on Inflammation,” Critical Reviews in Food Science and Nutrition, Vol. 51, No. 4, 2011, pp. 331-362. doi:10.1080/10408390903584094
[8] J. Nones, T. C. E Spohr and F. C. Gomes, “Hesperidin, a Flavone Glycoside, as Mediator of Neuronal Survival,” Neurochemical Research, Vol. 36, No. 10, 2011, pp. 1776-1784. doi:10.1007/s11064-011-0493-3
[9] K. Matsuzaki, K. Miyazaki, S. Sakai, H. Yawo, N. Nakata, S. Moriguchi, K. Fukunaga, A. Yokosuka, Y. Sashida, Y. Mimaki, T. Yamakuni and Y. Ohizumi, “Nobiletin, a Citrus Flavonoid with Neurotrophic Action, Augments Protein Kinase A-mediated Phosphorylation of the AMPA Receptor Subunit, GluR1, and the Postsynaptic Receptor Response to Glutamate in Murine Hippocampus,” European Journal of Pharmacology, Vol. 578, No. 2-3, 2008, pp. 194-200. doi:10.1016/j.ejphar.2007.09.028
[10] Y. Yamamoto, N. Shioda, F. Han, S. Moriguchi, A. Nakajima, A. Yokosuka, Y. Mimaki, Y. Sashida, T. Yamakuni, Y. Ohizumi and K. Fukunaga, “Nobiletin Improves Brain Ischemia-Induced Learning and Memory Deficits through Stimulation of CaMKII and CREB Phosphorylation,” Brain research, Vol. 1295, 2009, pp. 218-229. doi:10.1016/j.brainres.2009.07.081
[11] E. G. Miller, J. J. Peacock, T. C. Bourland, S. E. Taylor, J. M. Wright, B. S. Patil and E. G. Miller, “Inhibition of Oral Carcinogenesis by Citrus Flavonoids,” Nutrition and Cancer, Vol. 60, No. 1, 2008, pp. 69-74. doi:10.1080/01635580701616163
[12] S. Aranganathan and N. Nalini, “Efficacy of the Potential Chemopreventive Agent, Hesperetin (Citrus Flavanone), on 1,2-Dimethylhydrazine Induced Colon Carcinogenesis,” Food Chemical and Toxicology, Vol. 47, No. 10, 2009, pp. 2594-2600. doi:10.1016/j.fct.2009.07.019
[13] Y. Iwase, Y. Takemura, M. Ju-Ichi, M. Yano, C. Ito, H. Furukawa, T. Mukainaka, M. Kuchide, H. Tokuda and H. Nishino, “Cancer Chemopreventive Activity of 3,5,6,7,8,3’,4’-Heptamethoxyflavone from the Peel of Citrus Plants,” Cancer Letters, Vol. 163, No. 1, 2001, pp. 7-9. doi:10.1016/S0304-3835(00)00691-1
[14] A. Murakami and H. Ohigashi, “Cancer-Preventive AntiOxidants that Attenuate Free Radical Generation by Inflammatory Cells,” Biological Chemistry, Vol. 387, No. 4, 2006, pp. 387-392. doi:10.1515/BC.2006.052
[15] A. Eguchi, A. Murakami and H. Ohigashi, “Nobiletin, a Citrus Flavonoid, Suppresses Phorbol Ester-induced Expression of Multiple Scavenger Receptor Genes in THP-1 Human Monocytic Cells,” FEBS Letters, Vol. 580, No. 13, 2006, pp. 3321-3328. doi:10.1016/j.febslet.2006.04.077
[16] S. Y. Choi, J. H. Hwang, H. C. Ko, J. G. Park and S. J. Kim, “Nobiletin from Citrus Fruit Peel Inhibits the DNABinding Activity of NF-Kappab and ROS Production in LPS-Activated RAW 264.7 Cells,” Journal of Ethnopharmacology, Vol. 113, No. 1, 2007, pp. 149-155. doi:10.1016/j.jep.2007.05.021
[17] S. Harada, T. Tominari, C. Matsumoto, M. Hirata, M. Takita, M. Inada and C. Miyaura, “Nobiletin, a Polymethoxy Flavonoid, Suppresses Bone Resorption by Inhibiting NFkappaB-dependent Prostaglandin E Synthesis in Osteoblasts and Prevents Bone Loss Due to Estrogen Deficiency,” Journal of Pharmacological Sciences, Vol. 115, No. 1, 2011, pp. 89-93. doi:10.1254/jphs.10193SC
[18] M. Ikemura, Y. Sasaki, J. C. Giddings and J. Yamamoto, “Preventive Effects of Hesperidin, Glucosyl Hesperidin and Naringin on Hypertension and Cerebral Thrombosis in Stroke-prone Spontaneously Hypertensive Rats,” Phytotherapy Research, Vol. 26, No. 9, 2012, pp. 1272-1277. doi:10.1002/ptr.3724
[19] H. Negishi, K. Ikeda, M. Sagara, M. Sawamura and Y. Yamori, “Increased Oxidative DNA Damage in StrokeProne Spontaneously Hypertensive Rats,” Clinical and Experimental Pharmacology & Physiology, Vol. 26, No. 5-6, 1999, pp. 482-484. doi:10.1046/j.1440-1681.1999.03055.x
[20] K. Mizutani, K. Ikeda, T. Nishikata and Y. Yamori, “Phytoestrogens Attenuate Oxidative DNA Damage in Vascular Smooth Muscle Cells from Stroke-prone Spontaneously Hypertensive Rats,” Journal of Hypertension, Vol. 18, No. 12, 2000, pp. 1833-1840. doi:10.1097/00004872-200018120-00018
[21] K. Mizutani, K. Ikeda, Y. Kawai and Y. Yamori, “Protective Effect of Resveratrol on Oxidative Damage in Male and Female Stroke-prone Spontaneously Hypertensive Rats,” Clinical and Experimental Pharmacology & Physiology, Vol. 28, No. 1-2, 2001, pp. 55-59. doi:10.1046/j.1440-1681.2001.03415.x
[22] R. M. Touyz and A. M. Briones, “Reactive Oxygen Species and Vascular Biology: Implications in Human Hypertension,” Hypertension Research, Vol. 34, No. 1, 2011, pp. 5-14. doi:10.1038/hr.2010.201
[23] R. Rodrigo, J. Gonzalez and F. Paoletto, “The Role of Oxidative Stress in the Pathophysiology of Hypertension,” Hypertension Research, Vol. 34, No. 4, 2011, pp. 431-440. doi:10.1038/hr.2010.264
[24] T. Michel and P. M. Vanhoutte, “Cellular Signaling and NO Production,” Pflügers Archiv European Journal of Physiology, Vol. 459, No. 6, 2010, pp. 807-816. doi:10.1007/s00424-009-0765-9
[25] C. Banfi, M. Camera, G. Giandomenico, V. Toschi, M. Arpaia, L. Mussoni, E. Tremoli and S. Colli, “Vascular Thrombogenicity Induced by Progressive LDL Oxidation: Protection by Antioxidants,” Thrombosis and Haemostasis, Vol. 89, No. 3, 2003, pp. 544-553.
[26] R. L. Silverstein, W. Li, Y. M. Park and S. O. Rahaman, “Mechanisms of Cell Signaling by the Scavenger Receptor CD36: Implications in Atherosclerosis and Thrombosis,” Transactions of the American Clinical Climatollgical Association, Vol. 121, 2010, pp. 206-220.
[27] S. C. Whitman, E. M. Kurowska, J. A. Manthey and A. Daugherty, “Nobiletin, a Citrus Flavonoid Isolated from Tangerines, Selectively Inhibits Class A Scavenger Receptor-Mediated Metabolism of Acetylated LDL by Mouse Macrophages,” Atherosclerosis, Vol. 178, No. 1, 2005, pp. 25-32. doi:10.1016/j.atherosclerosis.2004.07.034
[28] E. E. Mulvihill, J. M. Assini, J. K. Lee, E. M. Allister, B. G. Sutherland, J. B. Koppes, C. G. Sawyez, J. Y. Edwards, D. E. Telford, A. Charbonneau, P. St-Pierre, A. Marette and M. W. Huff, “Nobiletin Attenuates VLDL Overproduction, Dyslipidemia, and Atherosclerosis in Mice with Diet-induced Insulin Resistance,” Diabetes, Vol. 60, No. 5, 2011, pp. 1446-1457. doi:10.2337/db10-0589
[29] R. C. Robbins, “Antithrombogenic Properties of a Hexamethoxylated Flavonoid. Reduction of Deaths in Rats Due to Intravascular Infusion of Adenosine Diphosphate (ADP),” Atherosclerosis, Vol. 18, No. 1, 1973, pp. 73-82. doi:10.1016/0021-9150(73)90118-4
[30] R. C. Robbins, “Flavones in Citrus Exhibit Antiadhesive Action on Platelets,” International Journal for Vitamin and Nutrition Research, Vol. 58, No. 4, 1988, pp. 418-421
[31] E. Sempinska, B. Kostka, M. Krolikowska and E. Kalisiak, “Effect of Flavonoids on the Platelet Adhesiveness in Repeatedly Bred Rats,” Polish Journal of Pharmacology and Pharmacy, Vol. 29, No. 1, 1977, pp. 7-10.
[32] T. Akachi, Y. Shiina, Y. Ohishi, T. Kawaguchi, H. Kawagishi, T. Morita, M. Mori and K. Sugiyama, “Hepatoprotective Effects of Flavonoids from Shekwasha (Citrus depressa) Against D-galactosamine-induced Liver Injury in Rats,” Journal of Nutritional Science and Vitaminology (Tokyo), Vol. 56, No. 1, 2010, pp. 60-67. doi:10.3177/jnsv.56.60
[33] Y. S. Lee, B. Y. Cha, K. Saito, S. S. Choi, X. X. Wang, B. K. Choi, T. Yonezawa, T. Teruya, K. Nagai and J. T. Woo, “Effects of a Citrus Depressa Hayata (Shiikuwasa) Extract on Obesity in High-Fat Diet-Induced Obese Mice,” Phytomedicine, Vol. 18, No. 8-9, 2011, pp. 648-654. doi:10.1016/j.phymed.2010.11.005
[34] The Physiological Society of Japan, “Guiding Principles for the Care and Use of Animals in the Field of Physiological Sciences,” 2003. http://int.physiology.jp/en/ethics/
[35] S. Morii, A. C. Ngai and H. R. Winn, “Reactivity of Rat Pial Arterioles and Venules to Adenosine and Carbon Dioxide: With Detailed Description of the Closed Cranial Window Technique in Rats,” Journal of Cerebral Blood Flow and Metabolism, Vol. 6, No. 1, 1986, pp. 34-41. doi:10.1038/jcbfm.1986.5
[36] Y. Sasaki, T. Noguchi, J. Seki, J. C. Giddings and J. Yamamoto, “Protective Effects of Imidapril on He-Ne Laser-Induced Thrombosis in Cerebral Blood Vessels of Stroke-Prone Spontaneously Hypertensive Rats,” Thrombosis and Haemostasis, Vol. 83, No. 5, 2000, pp. 722-727.
[37] Y. Sasaki, T. Noguchi, E. Yamamoto, J. C. Giddings, K. Ikeda, Y. Yamori and J. Yamamoto, “Effects of Ginkgo Biloba Extract (EGb 761) on Cerebral Thrombosis and Blood Pressure in Stroke-Prone Spontaneously Hypertensive Rats,” Clinical and Experimental Pharmacology & Physiology, Vol. 29, No. 11, 2002, pp. 963-967. doi:10.1046/j.1440-1681.2002.03761.x
[38] M. El Haouari and J. A. Rosado, “Platelet Function in Hypertension,” Blood Cells, Molecules & Diseases, Vol. 42, No. 1, 2009, pp. 38-43. doi:10.1016/j.bcmd.2008.07.003
[39] R. Rodrigo, J. Gonzalez and F. Paoletto, “The Role of Oxidative Stress in the Pathophysiology of Hypertension,” Hypertension Research, Vol. 34, No. 4, 2011, pp. 431-440. doi:10.1038/hr.2010.264
[40] T. Seno, N. Inoue, D. Gao, M. Okuda, Y. Sumi, K. Matsui, S. Yamada, K. I. Hirata, S. Kawashima, R. Tawa, S. Imajoh-Ohmi, H. Sakurai and M. Yokoyama, “Involvement of NADH/NADPH Oxidase in Human Platelet ROS Production,” Thrombosis Research, Vol. 103, No. 5, 2001, pp. 399-409. doi:10.1016/S0049-3848(01)00341-3
[41] B. Wachowicz, B. Olas, H. M. Zbikowska and A. Buczynski, “Generation of Reactive Oxygen Species in Blood Platelets,” Platelets, Vol. 13, No. 3, 2002, pp. 175-182. doi:10.1080/09533710022149395
[42] F. Krotz, H. Y. Sohn and U. Pohl, “Reactive Oxygen Species: Players in the Platelet Game,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 24, No. 11, 2004, pp. 1988-1996. doi:10.1161/01.ATV.0000145574.90840.7d
[43] J. A. Guerrero, L. Navarro-Nunez, M. L. Lozano, C. Martinez, V. Vicente, J. M. Gibbins and J. Rivera, “Flavonoids Inhibit the Platelet TxA(2) Signalling Pathway and Antagonize TxA(2) Receptors (TP) in Platelets and Smooth Muscle Cells,” British Journal of Clinical Pharmacology, Vol. 64, No. 2, 2007, pp. 133-144. doi:10.1111/j.1365-2125.2007.02881.x
[44] Y. Hirata, Y. Masuda, H. Kakutani, T. Higuchi, K. Takada, A. Ito, Y. Nakagawa and H. Ishii, “Sp1 is an Essential Transcription Factor for LPS-induced Tissue Factor Expression in THP-1 Monocytic Cells, and Nobiletin Represses the Expression through Inhibition of NF-kappaB, AP-1, and Sp1 Activation,” Biochemical Pharmacology, Vol. 75, No. 7, 2008, pp. 1504-1514. doi:10.1016/j.bcp.2007.12.019
[45] D. Harats, M. A. Mulkins and E. Sigal, “A Possible Role for 15-Lipoxygenase in Atherogenesis,” Trends in Cardiovascular Medicine, Vol. 5, No. 1, 1995, pp. 29-36. doi:10.1016/1050-1738(94)00029-U
[46] K. E. Malterud and K. M. Rydland, “Inhibitors of 15-Lipoxygenase from Orange Peel,” Journal of Agricultural and Food Chemistry, Vol. 48, No. 11, 2000, pp. 5576-5580. doi:10.1021/jf000613v
[47] D. Harats, A. Shaish, J. George, M. Mulkins, H. Kurihara, H. Levkovitz and E. Sigal, “Overexpression of 15-Lipoxygenase in Vascular Endothelium Accelerates Early Atherosclerosis in LDL Receptor-deficient Mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 20, No. 9, 2000, pp. 2100-2105. doi:10.1161/01.ATV.20.9.2100
[48] R. Paoletti, A. M. J. Gotto and D. P. Hajjar, “Inflammation in Atherosclerosis and Implications for Therapy,” Circulation, Vol. 109, Suppl. 1, 2004, pp. 20-26. doi:10.1161/01.CIR.0000131514.71167.2e
[49] K. Gertow, E. Nobili, L. Folkersen, J. W. Newman, T. L. Pedersen, J. Ekstrand, J. Swedenborg, H. Kuhn, C. E. Wheelock, G. K. Hansson, U. Hedin, J. Z. Haeggstrom and A. Gabrielsen, “12and 15-Lipoxygenases in Human Carotid Atherosclerotic Lesions: Associations with Cerebrovascular Symptoms,” Atherosclerosis, Vol. 215, No. 2, 2011, pp. 411-416. doi:10.1016/j.atherosclerosis.2011.01.015
[50] J. L. Mehta, J. Chen, P. L. Hermonat, F. Romeo and G. Novelli, “Lectin-Like, Oxidized Low-Density Lipoprotein Receptor-1 (LOX-1): a Critical Player in the Development of Atherosclerosis and Related Disorders,” Cardiovascular Research, Vol. 69, No. 1, 2006, pp. 36-45. doi:10.1016/j.cardiores.2005.09.006

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.