Effects of Natural Radiation, PAR and Artificial Ultraviolet Radiation-B on the Ultrastructure and Histochemistry of Leaf of Oryza sativa L.

Abstract

Ultraviolet radiation-B (UVBR) affects plants in many important ways, including reduced growth rate, reduction of primary productivity and changes in ultrastructure. The rice (Oryza sativa) is one of the most cultivated cereal in the world along with corn and wheat, representing over 50% of agricultural production. In this study, we examined O. sativa exposed to natural radiation denominated which “ambient samples”, plants cultivated which photosynthetically active radiation (PAR), denominated with PAR-only and plants cultivated with PAR + UVBR for 2 h per day during 30 days of cultivation in vitro. The samples were processed for electron microscopy and histochemistry analysis. PAR + UVBR caused changes in the ultrastructure of leaf of O. sativa, mesophyll cells, which included increased thickness of the cell wall and plastoglobuli, reduced intracellular spaces, changes in the cell contour, and destruction of chloroplast and mitochondria internal organization. The exposure to PAR + UVBR led to changes in guard and subsidiary cells, and the stomata and papillae were with irregular shape. The reduction of epicuticular wax that covered the leaf, was observed. Taken together, these ?ndings strongly suggested that PAR + UVBR negatively affects the ultrastructure and morphology and growth rates, of leaf of O. sativa and, in the long term, their economic viability.

Share and Cite:

S. Almeida, É. Schmidt, A. Rodrigues and Z. Bouzon, "Effects of Natural Radiation, PAR and Artificial Ultraviolet Radiation-B on the Ultrastructure and Histochemistry of Leaf of Oryza sativa L.," American Journal of Plant Sciences, Vol. 3 No. 10, 2012, pp. 1361-1368. doi: 10.4236/ajps.2012.310164.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Madronich, “Implications of Recent Total Atmospheric Ozone Measurements for Biological Active Ultraviolet Radiation Reaching the Earths Surface,” Geophyscal Research Letters, Vol. 19, No. 1, 1992, pp. 37-40. doi:10.1029/91GL02954
[2] J. B. Kerr and C. T. Mc Elroy, “Evidence for Large Upward Trends of Ultraviolet-B Radiation Linked to Ozone Depletion,” Science, Vol. 262 No. 5136, 1993, pp. 1032-1034. doi:10.1126/science.262.5136.1032
[3] D. L. Mitchell, J. Jen and J. E. Cleaver, “Sequence Specificity of Cyclobutane Pyrimidine Dimers in DNA Treated with Solar (Ultraviolet B) Radiation,” Nucleic Acids Research, Vol. 20, No. 2, 1992, pp. 225-229.
[4] é. C. Schmidt, T. Rover, L. Scariot and Z. L. Bouzon, “Changes in Ultrastructure and Histochemistry of Two Red Macroalgae Strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales), as a Consequence of Ultraviolet B Radiation Exposure,” Micron, Vol. 40, No. 8, 2009, pp. 860-869. doi:10.1016/j.micron.2009.06.003
[5] é. C. Schmidt, M. Maraschin and Z. L. Bouzon, “Effects of UVB Radiation on the Carragenophyte Kappaphycus alvarezii (Rhodophyta, Gigartinales): Changes in Ultrastructure, Growth, and Photosynthetic Pigments,” Hydrobiologia, Vol. 649, No. 1, 2010, pp. 171-182. doi:10.1007/s10750-010-0243-6
[6] é. C. Schmidt and B. N. Gomes, M. Maraschin and Z. L. Bouzon, “Effect of Ultraviolet-B Radiation on Growth, Photosynthetic Pigments, and Cell Biology of Kappaphycus alvarezii (Rhodophyta, Gigartinales) Macroalgae Brown Strain,” Photosynthetica, Vol. 48, No. 2, 2010, pp. 161-172. doi:10.1007/s11099-010-0022-7
[7] M. P. Lesser and J. M. Shick, “Effects of Irradiance and Ultraviolet Radiation on Photoadaptation in the Zooxanthellae of Aiptasia pallida: Primary Production, Photoinhibition, and Enzymic Defenses against Oxygen Toxicity,” Marine Biology, Vol. 102, 1994, pp. 243-255.
[8] é. C. Schmidt, B. Pereira, R. Santos, C. L. M. Pontes, F. Scherner, P. A. Horta, M. R. Paula, A. Latini, F. Ramlov, M. Maraschin and Z. L. Bouzon, “Alterations in Architecture and Metabolism Induced by Ultraviolet Radiation-B in the Carragenophyte Chondracanthus teedei (Rhodophyta, Gigartinales),” Protoplasma, Vol. 249, No. 2, 2012, pp. 353-367.
[9] M. R. T. Boeger and M. Pulson, “Efeitos da Radia??o Ultravioleta-B Sobre a Morfologia Foliar de Arabidopsis thaliana (L.) Heynh. (Brassicaceae),” Acta Botanica Brailicas, Vol. 20, 2006, pp. 329-338.
[10] Q. Dai, S. Peng, A. Q. Chavez and B. S. Vergara, “Effects of UV-B Radiation on Stomatal Density and Opening in Rice (Oryza sativa L.),” Annals of Botany, Vol. 76, No. 1, 1995, pp. 65-70. doi:10.1006/anbo.1995.1079
[11] K. Zuk-Golaszewska, M. K. Upadhyaya and J. Golaszewski, “The Effect of UV-B Radiation on Plant Growth and Development,” Plant, Soil and Environment, Vol. 49 No. 3, 2003, pp. 135-140.
[12] M. M. Cassi-Lit, J. Whitecross, M. Nayudu and G. J. Tanner, “UV-B Radiation Induces Differential Leaf Damage, Ultra Structural Changes and Accumulation of Specific Phenolic Compounds in Rice Cultivars,” Australian Journal Plant Physiology, Vol. 24, No. 3, 1997, pp. 261- 274. doi:10.1071/PP96080
[13] F. Hóllosy, “Effects of Ultraviolet Radiation on Plant Cells,” Micron, Vol. 33, No. 2, 2002, pp. 179-197.
[14] é. C. Schmidt, B. Pereira, R. Santos, C. Gouveia, G. B. Costa, G. S. M. Faria, F. Scherner, P. A. Horta, M. R. Paula, A. Latini, F. Ramlov, M. Maraschin and Z. L. Bouzon, “Responses of the Macroalgae Hypnea Musciformis after in Vitro Exposure to UV-B,” Aquatic Botany, Vol. 100, 2012, pp. 8-17. doi:10.1016/j.aquabot.2012.03.004
[15] S. H. Sarghein, J. Carapetian and J. Khara, “The Effects of UV Radiation on Some Structural and Ultrastructural Parameters in Pepper (Capsicum longum A.DC.),” Turkish Journal Biology, Vol. 35, No. 1, 2011, pp. 69-77.
[16] L. Talarico and G. Maranzana, “Light and Adaptative Responses in Red Macroalgae: An Overview,” Journal of Photochemistry and Photobiology B: Biology, Vol. 56, No. 1, 2000, pp. 1-11. doi:10.1016/S1011-1344(00)00046-4
[17] S. Nogue′s, D. J. Allen, J. I. L. Morison and N. R. Baker, “Ultraviolet-B Radiation Effects on Water Relations, Leaf Development and Photosynthesis in Droughted Pea Plants,” Plant Physiology, Vol. 117, No. 1, 1998, pp. 173-181. doi:10.1104/pp.117.1.173
[18] R. Gonzalez, R. Mepsted, A. R. Wellburn and N. D. Paul, “Non-Photosynthetic Mechanisms of Growth Reduction in Pea (Pisum sativum) Exposed to UV-B Radiation,” Plant Cell and Environment, Vol. 21, No. 1, 1998, pp. 23-32. doi:10.1046/j.1365-3040.1998.00243.x
[19] C. M. Alenius, T. C. Vogelmann and J. F. Bornman, “A Three-Dimensional Representation of the Relationship between Penetration of UV-B Radiation and UV-Screening Pigments in Leaves of Brassica napus,” New Phytologist, Vol. 131, No. 3, 1995, pp. 297-302. doi:10.1111/j.1469-8137.1995.tb03065.x
[20] C. T. Ruhland, M. J. Fogal, C. R. Buyarski and M. Krna, “Solar Ultraviolet-B Radiation Increases Phenolic Content and Ferric Reducing Antioxidant Power in Avena sativa,” Molecules, Vol. 12, No. 6, 2007, pp. 1220-1232. doi:10.3390/12061220
[21] R. T. Abdala-Díaz, A. Cabello-Pasini, E. Pérez-Rodríguez, R. M. C. álvarez and F. L. Figueroa, “Daily and Seasonal Variations of Optimum Quantum Yield and Phenolic Compounds in Cystoseira tamariscifolia (Phaeophyta),” Marine Biology, Vol. 148, No. 3, 2006, pp. 459-465. doi:10.1007/s00227-005-0102-6
[22] I. Staxén and J. F. Bornman, “A Morphological and Cytological Study of Petunia hybrida Exposed to UV-B Radiation,” Physiologia Plantarum, Vol. 91, No. 4, 1994, pp. 735-740. doi:10.1111/j.1399-3054.1994.tb03013.x
[23] é. C. Schmidt, R. Santos, P. A. Horta, M. Maraschin and Z. L. Bouzon, “Effects of UVB Radiation on the Agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales): Changes in Cell Organization, Growth and Photosynthetic Performance,” Micron, Vol. 41, No. 8, 2010, pp. 919-930. doi:10.1016/j.micron.2010.07.010
[24] A. Post, S. Gentle and A. W. S. Larkum, “Algal Photosynthesis: Inhibition by UV-B Radiation, Recovery and UV-Absorbing Pigments,” In: N. Murata, Ed., Research in Photosynthesis, Kluwer Academic Publishing, London, 1992, pp. 847-850.
[25] P. J. Neale, J. C. Cullen, M. P. Lesser and A. Melis, “Physiological Bases for Detecting and Predicting Photoinhibition of Aquatic Photosynthesis by PAR and UV Radiation,” In: H. Y. Yamamoto and C. M. Smith, Eds., Photosynthetic Responses to the Environment, American Society of Plant Biologists, Rockville, 1993, pp. 61-77.
[26] I. Vass, “Adverse Effects of UV-B Light on the Structure and Function of the Photosynthetic Apparatus,” Handbook of photosynthesis, Marcel Dekker, New York, 1997.
[27] F. Poppe, R. A. M. Schmidt, D. Hanelt and C. Wiencke, “Effects of UV Radiation on the Ultrastructure of Several Red Algae,” Phycological Research, Vol. 51, No. 1, 2003, pp. 11-19.
[28] C. J. Doughty and A. B. Hope, “Effects of Ultraviolet Radiation on the Membranes of Chara coralline,” Journal of Membrane Biology, Vol. 13, No. 1, 1973, pp.185-198. doi:10.1007/BF01868227
[29] T. M. Murphy, “Membranes as Targets of Ultraviolet Radiation,” Physiologia Plantarum, Vol. 58, No. 3, 1983, pp. 381-388. doi:10.1111/j.1399-3054.1983.tb04198.x
[30] R. L. Gallo, I. E. Kochevar and R. D. Granstein, “Ultraviolet Radiation Induces a Change in Cell Membrane Potential in Vitro: A Possible Signal for Ultraviolet Radiation Induced Alteration in Cell Activity,” Photochemistry and Photobiology, Vol. 49, No. 5, 1989, pp. 655-662. doi:10.1111/j.1751-1097.1989.tb08438.x
[31] W. Iwanzik, M. Tevini, G. Dohnt, M. Voss, W. Weiss, P. Gr?ber and G. Renger, “Action of UV-B Radiation on Photosynthetic Primary Reactions in Spinach Chloroplasts,” Physiologia Plantarum, Vol. 58, No. 3, 1983, pp. 401- 407 doi:10.1111/j.1399-3054.1983.tb04201.x
[32] W. S. Chow, A. Strid and J. M. Anderson, “Short-Term Treatment of Pea Plants with Supplementary Ultraviolet-B Radiation: Recovery Time-Courses of Some Photosynthetic Functions and Components,” In: N. Murata, Ed., Research in Photosynthesis, Kluwer Academic Publishing, Dordrecht, 1992, pp. 361-364.
[33] E. Hideg and I. Vass, “UV-B Induced Free Radical Production in Plant Leaves and Isolated Thylakoid Membranes,” Plant Science, Vol. 115, No. 2, 1996, pp. 251- 260. doi:10.1016/0168-9452(96)04364-6
[34] A. Holzinger, M. Y. Roleda, C. Lütz, “The Vegetative Arctic Freshwater Green Alga Zygnema is insensitive to Experimental UV Exposure,” Micron, Vol. 40, No. 8, 2009, pp. 831-838. doi:10.1016/j.micron.2009.06.008
[35] J. Vosjan, H. D?hler and G. Nieuwland, “Effect of UV-B Irradiance on the ATP Content of Microorganisms of the Weddell sea (Antarctica),” Netherlands Journal of Sea Research, Vol. 25, No. 3, 1990, pp. 391-394. doi:10.1016/0077-7579(90)90046-J

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.