Preliminary Characterizations of a Carbohydrate from the Concentrated Culture Filtrate from Fusarium solani and Its Role in Benzo[a]Pyrene Solubilization

Abstract

In order to investigate the mechanism of benzo[a]pyrene uptake by a filamentous fungus Fusarium solani, a biochemical characterization of its concentrated culture filtrate has been conducted. The preparation contained approximately (w/w): 50% of total carbohydrate, 6.5% of uronic acid and 6% protein, as determined by colorimetric tests. Gel filtration and anion-exchange chromatographic profiles indicated that the main product of the culture filtrate was a glycoprotein, which contained mannose, glucose and galactose in an approximate molar ratio of 1.5: 0.8: 1. The polysaccharide fraction of the culture filtrate was prepared by treatment with proteinase K, followed by gel-filtration chromatography. Its chemical structure was studied by methylation analysis, gas-liquid chromatography-mass spectrometry (GC-MS) and Nuclear Magnetic Resonance spectroscopy (NMR). The major carbohydrate was a polymer of β-(1 → 6)-linked galactofuranose units fully branched at positions O-2 by single residues of α-glucopyranose. The Fusarium concentrated culture filtrate increased 4-fold the BaP solubilization in comparison with its aqueous solubility and suggested that the carbohydrate present in this filtrate should probably be involved in this enhancement. Our findings point out the potential role of fungal glycoproteins in PAH microbial bioavaibility, an important step for PAH biodegradation.

Share and Cite:

E. Veignie, E. Vinogradov, I. Sadovskaya, C. Coulon and C. Rafin, "Preliminary Characterizations of a Carbohydrate from the Concentrated Culture Filtrate from Fusarium solani and Its Role in Benzo[a]Pyrene Solubilization," Advances in Microbiology, Vol. 2 No. 3, 2012, pp. 375-381. doi: 10.4236/aim.2012.23047.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Dipple, “Polynuclear Aromatic Carcinogens,” In: C. E. Searle, Ed., Chemical Carcinogens, ACS Monograph Series 3, American Chemical Society, Washington DC, 1976, pp. 245-314.
[2] C. E. Cerniglia, “Biodegradation of Polycyclic Aromatic Hydrocarbons,” Biodegradation, Vol. 3, No. 2-3, 1992, pp. 351-368. doi:10.1007/BF00129093
[3] C. Rafin, O. Potin, E. Veignie, A. Lounes-Hadj Sahraoui and M. Sancholle, “Degradation of Benzo[a]Pyrene as Sole Carbon Source by a Non White Rot Fungus, Fusarium solani,” Polycyclic Aromatic Compounds, Vol. 21, No. 1-4, 2000, pp. 311-329. doi:10.1080/10406630008028542
[4] O. Potin, C. Rafin and E. Veignie, “Bioremediation of an Aged Polycyclic Aromatic Hydrocarbons (PAHs)-Contaminated Soil by Filamentous Fungi Isolated from the Soil,” International Biodeterioration & Biodegradation, Vol. 54, No. 1, 2004, pp. 45-52. doi:10.1016/j.ibiod.2004.01.003
[5] O. Potin, E. Veignie and C. Rafin, “Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Cladosporium sphaerospermum Isolated from an Aged PAH Contaminated Soil,” FEMS Microbiology Ecology, Vol. 51, No. 1, 2004, pp. 71-78. doi:10.1016/j.femsec.2004.07.013
[6] Y. R. Wu, T. T. He, J. S. Lun, K. Maskaoui, T. W. Huang and Z. Hu, “Removal of Benzo[a]Pyrene by a Fungus Aspergillus sp. BAP14,” World Journal of Microbiology and Biotechnology, Vol. 25, No. 8, 2009, pp. 1395-1401. doi:10.1007/s11274-009-0026-2
[7] E. Veignie, C. Rafin, P. Woisel, A. Lounes-Hadj Sahraoui and F. Cazier, “Metabolization of the Polycyclic Aromatic Hydrocarbon Benzo(a)Pyrene by a Non-White rot Fungus (Fusarium solani) in a Batch Reactor,” Polycyclic Aromatic Compounds, Vol. 22, No. 1, 2002, pp. 87-97. doi:10.1080/10406630210372
[8] C. Rafin, E. Veignie, P. Woisel, F. Cazier and G. Surpateanu, “New Potential of a Deuteromycete Fungus Fusarium solani in Benzo[a]Pyrene Degradation: An Eco-Physiological Hypothesis?” In: M. P. Glazer, Ed., New Frontiers in Environmental Research, Nova Science Publishers, Inc., New York, 2006, pp. 165-179.
[9] J. J. Cooney, C. Siporin and R. A. Smucker, “Physiological and Cytological Responses to Hydrocarbons by the Hydrocarbon-Using Fungus Cladosporium resinae,” Botanica Marina, Vol. 23, 1980, pp. 227-232.
[10] O. Kappeli, P. Walther, M. Mueller and A. Fiechter, “Structure of the Cell Surface of the Yeast Candida tropicalis and Its Relation to Hydrocarbon Transport,” Archives of Microbiology, Vol. 138, No. 4, 1984, pp. 279-282. doi:10.1007/BF00410890
[11] Y. Deng, Y. Zhang, A. E. L. Hesham, R. Liu and M. Yang, “Cell Surface Properties of Five Polycyclic Aromatic Compound Degrading Yeast Strains,” Applied Microbiology and Biotechnology, Vol. 86, No. 6, 2010, pp. 1933-1939. doi:10.1007/s00253-010-2477-7
[12] N. D. Lindley and M. T. Heydeman, “Uptake of Vapour Phase [14C]Dodecane by Whole Mycelia of Cladosporium resinae,” Journal of General Microbiology, Vol. 129, No. 7, 1983, pp. 2301-2305.
[13] I. Ciucanu and F. Kerek, “A Simple and Rapid Method for the Permethylation of Carbohydrates,” Carbohydrate Research, Vol. 131, No.2, 1984, pp. 209-217. doi:10.1016/0008-6215(84)85242-8
[14] M. Dubois, K. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith, “A Colorimetric Method for the Determination of Sugars,” Nature, Vol. 168, No. 4265, 1951, pp. 167. doi:10.1038/168167a0
[15] N. Blumenkrantz and G. Asboe-Hansen, “New Method for Quantitative Determination of Uronic Acids,” Analytical Biochemistry, Vol. 54, No. 2, 1973, pp. 484-489. doi:10.1016/0003-2697(73)90377-1
[16] U. K. Laemmli, “Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4,” Nature, Vol. 227, No. 5259, 1970, pp. 680-685. doi:10.1038/227680a0
[17] B. L. Reuhs, D. P. Geller, J. S. Kim, J. E. Fox, V. S. Kolli and S. G. Pueppke, “Sinorhizobium fredii and Sinorhizobium meliloti Produce Structurally Conserved Lipopolysaccharides and STRAIN-SPECIFIC K ANTIGENS,” Applied Microbiology and Biotechnology, Vol. 64, No. 12, 1998, pp. 4930-4938.
[18] E. Veignie, C. Rafin, D. Landy, S. Fourmentin and G. Surpateanu, “Fenton Degradation Assisted by Cyclodextrins of a High Molecular Weight Polycyclic Aromatic Hydrocarbon Benzo[a]Pyrene,” Journal of Hazardous Materials, Vol. 168, No. 2-3, 2009, pp. 1296-1301. doi:10.1016/j.jhazmat.2009.03.012
[19] K. Bock and C. Pedersen, “Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Monosaccharides,” Advances in Carbohydrate Chemistry & Biochemistry, Vol. 41, 1983, pp. 27-66. doi:10.1016/S0065-2318(08)60055-4
[20] I. R. Siddiqui and G. A. Adams, “An Extracellular Polysaccharide from Gibberella fujikuroi (Fusarium moniliforme),” Canadian Journal of Chemistry, Vol. 39, No.8, 1961, pp. 1683-1694. doi:10.1139/v61-216
[21] T. Jikibara, K. Tada, K. Takegawa and S. Iwahara, “Studies on the Uronic Acid-Containing Glycoproteins of Fusarium sp. M7-1: II. The Primary Structures of the Low Molecular Weight Carbohydrate Chains of the Glycoproteins,” Journal of Biochemistry, Vol. 111, No. 2, 1992, pp. 230-235.
[22] T. Jikibara, K. Takegawa and S. Iwahara, “Studies on the Uronic Acid-Containing Glycoproteins of Fusarium sp. M7-1: I. Isolation and Some Properties of the Glycoproteins,” Journal of Biochemistry, Vol. 111, No. 2, 1992, pp. 225-229.
[23] T. Jikibara, K. Takegawa and S. Iwahara, “Studies on the Uronic Acid-Containing Glycoproteins of Fusarium sp. M7-1: III. The Primary Structures of the Acidic Polysaccharides of the Glycoproteins,” Journal of Biochemistry, Vol. 111, No. 2, 1992, pp. 236-243.
[24] S. Iwahara, N. Suemori, N. Ramli and K. Takegawa, “Isolation and Identification of Novel Acidic Oligosaccharides Derived from Glycoproteins of Fusarium sp. M7- 1,” Bioscience, Biotechnology and Biochemistry, Vol. 59, No. 6, 1995, pp. 1082-1085. doi:10.1271/bbb.59.1082
[25] S. Iwahara, N. Suemori and K. Takegawa, “Isolation and Identification of a Choline-Linked Mannobiose in the Glycoproteins of Fusarium sp. M7-1,” Bioscience, Bio- technology and Biochemistry, Vol. 60, No. 2, 1996, pp. 349-350. doi:10.1271/bbb.60.349
[26] K. Takegawa, K. Satoh, N. Ramli, T. Jikibara and S. Iwahara, “Production and Characterization of Extracellular Uronic Acid-Containing Glycoproteins from Fusarium oxysporum,” Journal of Fermentation and Bioengineering, Vol. 83, No. 2, 1997, pp. 197-200. doi:10.1016/S0922-338X(97)83583-0
[27] R. B. Da Silva, G. L. Ribeiro, G. L. Sassaki, P. A. J. Gorin and E. Barreto-Bergter, “Uronic Acid-Containing Glycopeptides from Fusarium oxysporum: Possible Significance as Chemotypes,” Carbohydrate Polymers, Vol. 60, No. 4, 2005, pp. 449-455. doi:10.1016/j.carbpol.2005.02.021
[28] J. A. Leal, A. Prieto, M. Bernabe and D. L. Hawksworth, “An Assessment of Fungal Wall Heteromannans as a Phylogenetically Informative Character in Ascomycetes,” FEMS Microbiology Review, Vol. 34, No. 6, 2010, pp. 986-1014.
[29] O. Ahrazem, B. Gomez-Miranda, A. Prieto, I. Barasoaìn, M. Bernabe and J. A. Leal, “An Acidic Water-Soluble Polysaccharide: A Chemotaxonomix Marker for Fusarium and Gibberella,” Mycological Research, Vol. 104, No. 5, 2000, pp. 603-610. doi:10.1017/S0953756299001550
[30] J. Szejtli, “Introduction and General Overview of Cyclo- dextrin Chemistry,” Chemical Reviews, Vol. 98, No. 5, 1998, pp. 1743-1753. doi:10.1021/cr970022c
[31] A. M. Rosu, E. Veignie, G. Surpateanu, G. Brabie, D. N. Miron and C. Rafin, “Synthesis and Evaluation of Hydroxypropylated Potato Starch as Polymeric Support for Benzo[a]Pyrene Degradation by Fenton Reaction,” Carbohydrate Polymers, Vol. 83, No. 4, 2011, pp. 1486-1491. doi:10.1016/j.carbpol.2010.09.059
[32] J. Masuoka and K. C. Hazen, “Cell Wall Mannan and Cell Surface Hydrophobicity in Candida albicans Serotype A and B Strains,” Infection and Immunity, Vol. 72, No. 11, 2004, pp. 6230-6236. doi:10.1128/IAI.72.11.6230-6236.2004
[33] M. C. Cirigliano and G. M. Carman, “Purification and Characterization of Liposan, a Bioemulsifier from Candida lipolytica,” Applied Microbiology and Biotechnology, Vol. 50, No 4, 1985, pp. 846-850.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.