Total Phenolic Content and Antioxidant Activity of Red and Yellow Quinoa (Chenopodium quinoa Willd.) Seeds as Affected by Baking and Cooking Conditions

Abstract

Seeds with colored testa (seed coat) contain high concentrations of polyphenolic compounds that exhibit high levels of antioxidant activity. Common processing procedures, such as cooking and baking, decrease the levels of these bioactive compounds and consequently, overall antioxidant activity. Here, the effects of baking and cooking processes were examined on total phenolic content (TPC), total flavonoid content (TFC) and ferric-reducing ability of plasma antioxidant activity (FRAP AA) of red and yellow quinoa seeds. Our results indicate that red quinoa seed contains significantly higher levels of TPC, TFC and FRAP AA than yellow quinoa seeds. In addition, cooked and baked quinoa seeds retain most of their TPC, TFC and FRAP AA in the final product. Thus, red quinoa seeds processed by these two methods might be considered a functional food, in addition to its traditional role of providing dietary proteins. Due to their high antioxidant activity, red quinoa seeds might also contribute significantly to the management and/or prevention of degenerative diseases associated with free radical damage.

Share and Cite:

Y. Brend, L. Galili, H. Badani, R. Hovav and S. Galili, "Total Phenolic Content and Antioxidant Activity of Red and Yellow Quinoa (Chenopodium quinoa Willd.) Seeds as Affected by Baking and Cooking Conditions," Food and Nutrition Sciences, Vol. 3 No. 8, 2012, pp. 1150-1155. doi: 10.4236/fns.2012.38151.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Tapia, “The Environment, Crops and Agricultural Systems in the Andes of Southern Peru,” IICA, 1982.
[2] H. Ando, Y. Chen, H. Tang, M. Shimizu, K. Watanabe and T. Mitsunaga, “Food Components in Fractions of Quinoa Seed,” Food Science Technology Reseach, Vol. 8, 2002, pp. 80-84. doi:10.3136/fstr.8.80
[3] Y. Konishi, S. Hirano, H. Tsuboi and M. Wada, “Distribution of Minerals in Quinoa (Chenopodium quinoa Willd.) Seeds,” Bioscience, Biotechnology and Biochemistry, Vol. 68, No. 1, 2004, pp. 231-234. doi:10.1271/bbb.68.231
[4] M. Koziol, “Chemical Composition and Nutritional Evaluation of Quinoa (Chenopodium quinoa Willd.),” Journal of Food Composition Analysis, Vol. 5, No. 1, 1992, pp. 35-68. doi:10.1016/0889-1575(92)90006-6
[5] G. Ranhotra, J. Gelroth, B. Glaser, K. Lorenz and D. Johnson, “Composition and Protein Nutritional Quality of Quinoa,” Cereal Chemistry, Vol. 70, 1993, pp. 303-305.
[6] R. Repo-Carrasco, C. Espinoza and S. E. Jacobsen, “Nutritional Value and Use of the Andean Crops Quinoa (Chenopodium quinoa) and Kaniwa (Chenopodium pallidicaule),” Food Reviews International, Vol. 19, No. 1-2, 2003, pp. 179-189. doi:10.1081/FRI-120018884
[7] X. Han, T. Shen and H. Lou, “Dietary Polyphenols and Their Biological Significance,” International Journal of Molecular Science, Vol. 8, No. 9, 2007, pp. 950-988. doi:10.3390/i8090950
[8] S. Gorinstein, O.-J. Medina Vargas, N.-O. Jaramillo, I. Arnao Salas, A.-L. Martinez Ayala, P. Arancibia-Avila, F. Toledo, E. Katrich and S. Trakhtenberg, “The Total Polyphenols and the Antioxidant Potentials of Some Selected Cereals and Pseudocereals,” European Food Research and Technology, Vol. 225, No. 3, 2007, pp. 321-328. doi:10.1007/s00217-006-0417-7
[9] P. Pa?ko, H. Bartoń, P. Zagrodzki, S. Gorinstein, M. Fo?ta and Z. Zachwieja, “Anthocyanins, Total Polyphenols and Antioxidant Activity in Amaranth and Quinoa Seeds and Sprouts during Their Growth,” Food Chemistry, Vol. 115, No. 3, 2009, pp. 994-998. doi:10.1016/j.foodchem.2009.01.037
[10] P. Pasko, M. Sajewicz, S. Gorinstein and Z. Zachwieja, “Analysis of Selected Phenolic Acids and Flavonoids in Amaranthus cruentus and Chenopodium quinoa Seeds and Sprouts by HPLC,” Acta Chromomatographica, Vol. 20, 2008, pp. 661-672. doi:10.1556/AChrom.20.2008.4.11
[11] R. Repo-Carrasco-Valencia, J. K. Hellstr?m, J.-M. Pihlava and P. H. Mattila, “Flavonoids and Other Phenolic Compounds in Andean Indigenous Grains: Quinoa (Chenopodium quinoa), Ka?iwa (Chenopodium pallidicaule) and Iwicha (Amaranthus caudatus),” Food Chemistry, Vol. 120, 2010, pp. 128-133. doi:10.1016/j.foodchem.2009.09.087
[12] E. Ryan, K. Galvin, T. O’Connor, A. Maguire and N. O’Brien, “Phytosterol, Squalene, Tocopherol Content and Fatty Acid Profile of Selected Seeds, Grains, and Legumes,” Plant Foods for Human Nutrition, Vol. 62, No. 1, 2007, pp. 85-91. doi:10.1007/s11130-007-0046-8
[13] P. Pasko, H. Barton, P. Zagrodzki, A. Izewska, M. Krosniak, M. Gawlik and S. Gorinstein, “Effect of Diet Supplemented with Quinoa Seeds on Oxidative Status in Plasma and Selected Tissues of High Fructose-Fed Rats,” Plant Foods for Human Nutrition, Vol. 65, No. 3, 2010, pp. 146-151. doi:10.1007/s11130-010-0164-6
[14] L. Alvarez-Jubete, H. Wijngaard, E. K. Arendt and E. Gallagher, “Polyphenol Composition and in Vitro Antioxidant Activity of Amaranth, Quinoa Buckwheat and Wheat as Affected by Sprouting and Baking,” Food Chemistry, Vol. 119, No. 2, 2010, pp. 770-778. doi:10.1016/j.foodchem.2009.07.032
[15] I. Dini, G. C. Tenore and A. Dini, “Antioxidant Compound Contents and Antioxidant Activity before and after Cooking in Sweet and Bitter Chenopodium Quinoa Seeds,” LWT: Food Science and Technology, Vol. 43, No. 3, 2010, pp. 447-451. doi:10.1016/j.lwt.2009.09.010
[16] A. Segev, H. Badani, L. Galili, R. Hovav, Y. Kapulnik, I. Shomer and S. Galili, “Total Phenolic Content and Antioxidant Activity of Chickpea (Cicer arietinum L.) as Affected by Soaking and Cooking Conditions,” Journal of Food Nutritional Sciences, Vol. 2, 2011, pp.724-730. doi:10.4236/fns.2011.27099
[17] B. Xu and S. K. C. Chang, “Effect of Soaking, Boiling, and Steaming on Total Phenolic Content and Antioxidant Activities of Cool Season Food Legumes,” Food Chemistry, Vol. 110, No. 1, 2008, pp. 1-13. doi:10.1016/j.foodchem.2008.01.045
[18] A. Segev, H. Badani, Y. Kapulnik, I. Shomer, M. Oren-Shamir and S. Galili, “Determination of Polyphenols, Flavonoids, and Antioxidant Capacity in Colored Chickpea (Cicer arietinum L.),” Journal of Food Science, Vol. 75, No. 2, 2010, pp. S115-S119. doi:10.1111/j.1750-3841.2009.01477.x
[19] V. L. Singleton, R. Orthofer and R. M. Lamuela-Raventos, “Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent,” Methods in Enzymology, Vol. 299, 1999, pp. 152-178. doi:10.1016/S0076-6879(99)99017-1
[20] V. L. Singleton and J. A. Rossi, “Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents,” American Journal of Enology and Viticulture, Vol. 16, No. 3, 1965, pp. 144-158.
[21] D. Heimler, P. Vignolini, M. G. Dini and A. Romani, “Rapid Tests to Assess the Antioxidant Activity of Phaseolus vulgaris L. Dry Beans,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 8, 2005, pp. 3053-3056. doi:10.1021/jf049001r
[22] I. F. F. Benzie and J. J. Strain, “The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘Antioxidant Power’: The FRAP Assay,” Analytical Biochemistry, Vol. 239, No. 1, 1996, pp. 70-76. doi:10.1006/abio.1996.0292
[23] B. J. Xu and S. K. C. Chang, “A Comparative Study on Phenolic Profiles and Antioxidant Activities of Legumes as Affected by Extraction Solvents,” Journal of Food Science, Vol. 72, No. 2, 2007, pp. S159-S166. doi:10.1111/j.1750-3841.2006.00260.x
[24] B. J. Xu, S. H. Yuan and S. K. C. Chang, “Comparative Analyses of Phenolic Composition, Antioxidant Capacity, and Color of Cool Season Legumes and Other Selected Food Legumes,” Journal of Food Science, Vol. 72, No. 7, 2007, pp. S167-S177. doi:10.1111/j.1750-3841.2006.00261.x
[25] D. P. Kachare, J. K. Chavan and S. S. Kadam, “Nutritional Quality of some Improved Cultivars of Cowpea,” Plant Foods for Human Nutrition, Vol. 38, No. 2, 1988, pp. 155-162. doi:10.1007/BF01091720
[26] Y. Chukwumah, L. T. Walker and M. Verghese, “Peanut Skin Color: A Biomarker for Total Polyphenolic Content and Antioxidative Capacities of Peanut Cultivars,” International Journal of Molecular Sciences, Vol. 10, 2009, pp. 4941-4952. doi:10.3390/ijms10114941
[27] Y. Shem-Tov, S. Galili, H. Badani, A. Segev, I. Hedvat and R. Hovav, “Determination of Total Polyphenol, Flavonoid and Anthocyanin Contents and Antioxidant Capacities of Skins from Peanut (Arachis hypogaea) Lines with Different Skin Colors,” Journal of Food Biochemistry, Vol. 36, 2011, pp. 301-308. doi:10.1111/j.1745-4514.2011.00539.x
[28] M. Miranda, A. Vega-Gálveza, J. Lópeza, G. Paradac, M. Sandersa, M. Arandab, E. Uribea and K. D. Scala, “Impact of Air-Drying Temperature on Nutritional Properties, Total Phenolic Content and Antioxidant Capacity of Quinoa Seeds (Chenopodium quinoa Willd.),” Industrial Crops and Products, Vol. 32, No. 3, 2010, pp. 258-263. doi:10.1016/j.indcrop.2010.04.019
[29] R. Y. Nsimba, H. Kikuzaki and Y. Konishi, “Antioxidant Activity of Various Extracts and Fractions of Chenopodium quinoa and Amaranthus spp. Seeds,” Food Chemistry, Vol. 106, No. 2, 2008, pp. 760-766. doi:10.1016/j.foodchem.2007.06.004
[30] Y. Hirose, T. Fujita, T. Ishii and N. Ueno, “Antioxidative Properties and Flavonoid Composition of Chenopodium quinoa Seeds Cultivated in Japan,” Food Chemistry, Vol. 119, No. 4, 2010, pp. 1300-1306. doi:10.1016/j.foodchem.2009.09.008
[31] I. Arcan and A. Yemenicioglu, “Antioxidant Activity of Protein Extracts from Heat-Treated or Thermally Processed Chickpeas and White Beans,” Food Chemistry, Vol. 103, No. 2, 2007, pp. 301-312. doi:10.1016/j.foodchem.2006.07.050
[32] H. Zielisnki and H. Koslowska, “Antioxidant Activity and Total Phenolics in Selected Cereal Grains and Their Different Morphological Fractions,” Journal of Agricultural and Food Chemistry, Vol. 48, No. 6, 2000, pp. 2008-2016. doi:10.1021/jf990619o
[33] C.-T. Brady, R. Rosen, S. Sang and V. Karwe, “Effects of Processing on the Nutraceutical Profile of Quinoa,” Food Chemistry, Vol. 100, No. 3, 2007, pp. 1209-1216. doi:10.1016/j.foodchem.2005.12.001
[34] M. Pasrija and D. Punia, “Effect of Pressure and Solar Cooking on Phytic Acid and Polyphenol Content of Cowpeas,” Nutrition and Food Science, Vol. 30, No. 3, 2000, pp. 133-137. doi:10.1108/00346650010319732
[35] M. Lindenmeier and T. Hofmann, “Influence of Baking Conditions and Precursor Supplementation on the Amounts of the Antioxidant Pronyl-L-Lysine in Bakery Products,” Journal of Agricultural and Food Chemistry, Vol. 52, No. 2, 2004, pp. 350-354. doi:10.1021/jf0346657
[36] G. J. McDougall, P. Dobson and N. Jordan-Mahy, “Effect of Different Cooking Regimes on Rhubarb Polyphenols,” Food Chemistry, Vol. 119, No. 2, 2010, p. 758. doi:10.1016/j.foodchem.2009.07.030
[37] K. B. Miller, D. A. Stuart, N. L. Smith, C. Y. Lee, N. L. Mchale, J. A. Flanagan, B. Ou and W. J. Hurst, “Antioxidant Activity and Polyphenol and Procyanidin Contents of Selected Commercially Available Cocoa-Containing and Chocolate Products in the United States,” Journal of Agricultural and Food Chemistry, Vol. 54, 2006, pp. 4062-4068. doi:10.1021/jf060290o
[38] L. Stahl, K. B. Miller, J. Apgar, D. S. Sweigart, D. A. Stuart, N. McHale, B. Ou, M. Kondo and W. J. Hurst, “Preservation of Cocoa Antioxidant Activity, Total Polyphenols, Flavan-3-Ols, and Procyanidin Content in Foods Prepared with Cocoa Powder,” Journal of Food Science, Vol. 74, No. 6, 2009, pp. C456-C461. doi:10.1111/j.1750-3841.2009.01226.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.