Experimental Methods of Determining Fracture Toughness of Fiber Reinforced Polymer Composites under Various Loading Conditions

Abstract

Polymer composites is a typical material consisting of a matrix reinforced with fiber/filler and the general nature of construction of the material itself provides innumerable sites for the initiation of a defect or for the growth of delamination. The life expectancy of composite structure requires a clear understanding of the material’s response to the growth of interlaminar delamination under Mode I, Mode II, Mode III and Mixed Modes. Fracture testing of fiber reinforced polymer-matrix composites is an active area of research. Even though substantial progress in the area of fracture testing has been achieved, there are still several problems awaiting solution. The new aspects in the experimental studies of interlaminar and intralaminar fracture toughness of polymer matrix composites were emphasized in this review paper. The different modes to evaluate the fracture energy were listed and their suitability was mentioned.

Share and Cite:

M. Prasad, C. Venkatesha and T. Jayaraju, "Experimental Methods of Determining Fracture Toughness of Fiber Reinforced Polymer Composites under Various Loading Conditions," Journal of Minerals and Materials Characterization and Engineering, Vol. 10 No. 13, 2011, pp. 1263-1275. doi: 10.4236/jmmce.2011.1013099.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] John M Barsom, Stanley, T Rolfe. (1987). Fracture and Fatigue control in structures: Application of Fracture Mechanics. Second Edition. Prentice Hall. Inc. USA.
[2] Todd M Mower, Victor C Li. (1987). Fracture characterization of random short fiber reinforced thermoset resin composites. Engineering fracture Mechanics. 26(4): 593-603.
[3] C K H Dharan. (1978). Fracture mechanics of composite materials. Journal of engineering materials and technology. 100: 223-247.
[4] R V Silva, D Spinelli, W W Bose Filho, S Claro Neto, G O Chierice, J R Tarpani. (2006). Fracture toughness of natural fibers/castor oil polyurethane composites. Composite Science and Technology. 66: 1328-1335.
[5] Mehdi Barikani, Hossein Saidpour, and Mutlu Sezen. (2002). Mode-I Interlaminar Fracture Toughness in Unidirectional Carbon-fiber/Epoxy Composites. Iranian Polymer Journal.11(6): 413-423.
[6] Reeder J R. (1993). A Bilinear Failure Criterion for Mixed-Mode Delamination. composite Materials: Testing and Design, ASTM STP 1206, E.T.Camponeschi, Jr., Ed.ASTM Int., W. Conshohocken, PA. 11: 303-322.
[7] Ratcliffe J. (2004)."Characterization of the Edge Crack Torsion (ECT) Test for Mode III Fracture Toughness Measurement of Laminated Composites", in proceeding of the 19th ASC/ASTM Technical Conference. Atlanta.
[8] ASTM D5528. (1994). Standard test method for Mode I interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites.
[9] O’Brien T K , and Martin R H. (1993). Results of ASTM Round Robin Testing for Mode I Interlaminar Fracture Toughness of Composite Materials. Journal of Composites Technology and Research. 15(4): 269 – 281.
[10] A B de Morais. (2003). Double cantilever beam testing of multidirectional laminates. Composite Part A: Applied Science. A34(12): 1135–1142.
[11] Pereira A B, de Morais A B. (2004). Mode I interlaminar fracture of carbon/epoxy multidirectional laminates. Composite Science and Technology. 64: 2261–2270.
[12] Choi N S, Kinloch A J, Willams J G. (1999). Delamination fracture of multidirectional carbon-fiber / epoxy composites under mode I, mode II and mixed mode I/II loading. Journal of Composite Material. 33(1): 73–100.
[13] A J Brunner, B R K Blackman and P Davies. (2008). A status report on delamination resistance testing of polymer–matrix composites. Engineering Fracture Mechanics.75: 2779–2794.
[14] Brunner A J, Flueler P. (2005). Prospects in fracture of engineering laminates. Engineering Fracture Mechanics. 72(6): 899–908.
[15] Hossein Saidpour, Mehdi Barikani, and Mutlu Sezen. (2003). Mode-II Interlaminar Fracture Toughness of Carbon/Epoxy Laminates. Iranian Polymer Journal.12 (5): 389-400.
[16] Jones R, Broughton W, Mousley R F, and Potter R T. (1985). Compression failure of damaged graphite epoxy laminates. Composite Structures. 3: 167-186.
[17] Davies P. (1993). ESIS protocols for interlaminar fracture testing of composites. France, IFREMER brochure.
[18] O’Brien T K. (1998). Interlaminar fracture toughness: the long and winding road to standardization. Composites- Part B: Engineering. 29B(1): 57–62.
[19] Gibson R F. (1994). Principles of Composite Material Mechanics. McGraw Hill, USA: 395-397.
[20] A B de Morais, A B Pereira, M F S F de Moura, A G Magalh?es. (2009). Mode III interlaminar fracture of carbon/epoxy laminates using the edge crack torsion (ECT) test. Composites Science and Technology. 69: 670–676.
[21] Wang S S. (1983). Fracture mechanics for delamination problems in composite materials. Journal of Composite Materials. 17: 210–233.
[22] Donaldson S L. (1988). Mode III interlaminar fracture characterization of composite materials. Composite Science and Technology. 32: 225–249.
[23] Martin R H. (1991). Evaluation of the split cantilever beam for Mode III interlaminar delamination testing. In: O’Brien TK, editor. ASTM STP 1110. Composite materials: fatigue and fracture, Philadelphia (PA): ASTM. 3: 243–266.
[24] Becht G, Gillespie J W. (1988). Design and analysis of the Cracked Rail Shear specimen for Mode III interlaminar fracture. Composite Science and Technology. 31: 143–157.
[25] Lee S M. (1993). An Edge Crack Torsion Method for Mode III Delamination Fracture Testing. Journal of Composite Technology and Research. 15(3): 193-201.
[26] Choi N S, Kinloch A J, Williams J G. (1999). Delamination fracture of multidirectional carbon-fiber /epoxy composites under Mode I, Mode II and Mixed-Mode I/II loading. Journal of Composite Material. 33: 73–100.
[27] Andersons J, Konig M. (2004). Dependence of fracture toughness of composite laminates on interface ply orientations and delamination growth direction. Composite Science and Technology. 64: 2139–2152.
[28] A B de Morais, A.B. Pereira. (2006). Mixed mode I + II interlaminar fracture of glass/epoxy multidirectional laminates – Part 1: Analysis. Composites Science and Technology. 66: 1889–1895.
[29] F Dharmawan, G Simpson, I Herszberg, S John. (2006). Mixed Mode fracture toughness of GFRP composites. Composite Structures. 75: 328-338.
[30] ASTM D6671/ D6671M. (2006). Standard test method for Mixed ModeI - Mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer–matrix composites.
[31] Amar C Garg. (1986). Intralaminar and interlaminar fracture in Graphite /Epoxy laminates. Engineering Fracture Mechanics. 23 (4): 719-733.
[32] Parhizgar S, Zachary L W, Sun C T. (1982). Application of the principle of linear elastic mechanics to composite materials. International Journal of Fracture. 20: 3-15.
[33] S Jose, R Ramesh Kumar, M K Jana, G. Venkateshwara Rao. (2001). Intralaminar fracture toughness of a cross –ply laminate and its constituent sub-laminates. Composite Science and Technology. 61: 1115-1122.
[34] Pinho, Robinson P, Lannucci L. (2006). Fracture toughness of the tensile and compressive fiber failure modes in laminated composites. Composite Science and Technology. 66: l2069-2079
[35] Pinho, Robinson P, Lannucci L. (2009). Developing a four point bend specimen to measure the mode I intralaminar fracture toughness of unidirectional laminated composites. Composite Science and Technology. 69:1303-1309.
[36] ASTM D5045. (1996). Standard test method for plane strain fracture and strain energy release rate of plastic materials.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.