Growth, Thermal, Mechanical and Dielectric Studies of Glycine Doped Potassium Acid Phthalate Single Crystals

Abstract

Single crystals of glycine doped potassium acid phthalate (KAP) have been grown from low temperature solution growth method by employing slow evaporation of the solvent at room temperature. The grown crystal was subjected to various studies such as X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), UV-visible and Second Harmonic Generation (SHG) studies. The thermal stability, mechanical strength and dielectric constant were also measured. The various studies revealed the influence of the glycine on KAP and the investigations indicated that glycine played an important role in the changes of the spectral, optical and mechanical properties of KAP crystals.

Share and Cite:

T. Baraniraj and P. Philominathan, "Growth, Thermal, Mechanical and Dielectric Studies of Glycine Doped Potassium Acid Phthalate Single Crystals," Journal of Minerals and Materials Characterization and Engineering, Vol. 10 No. 9, 2011, pp. 805-815. doi: 10.4236/jmmce.2011.109062.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H.O. Marcy, L.F. Warren, M.S. Webb, C.A. Ebbers, S.P. Velsko, G.C. Kennedy and G.C. Catella, Appl. Opt. 31, 5051 (1992a).
[2] X.Q. Wang, D. Xu, D.R. Yuan, Y.P. Tian, W.T. Yu, S.Y. Sun, Z.H. Yang, Q. Fang, M.K. Lu, Y.X. Yan, F.Q. Meng, S.Y. Guo, G.H. Zhang and M.H. Jiang, Mater. Res. Bull. 34, 2003 (1992b).
[3] H.O. Marcy, M.J. Rosker, L.F. Warren, P.H. Cunningham, C.A. Thomas, L.A. Deloach, S.P. Velsko, C.A. Ebbers, J.H. Liao and M.G. Kanatzidis, Opt. Lett. 20, 252 (1995).
[4] R. Mohan Kumar, D. Rajan Babu, G. Ravi and R. Jayavel, J. Cryst. Growth 250 113 (2003).
[5] R. Bairava Ganesh, V. Kannan, K. Meera, N.P. Rajesh and P. Ramasamy, J. Cryst. Growth 282, 429 (2005a).
[6] A.V. Alex and J. Philip, J. Appl. Phys. 88, 2349 (2000).
[7] M.H.J. Hottenhuis, J.G.E. Gardenhers, L.A.M.J. Jetten and P. Bennema, J. Cryst. Growth 92, 171 (1988).
[8] N. Kejalekshmy and K. Srinivasan, Opt. Mater. 27, 389 (2004).
[9] M.L. Barsukova, G.S. Belikova, L.M. Belyaev, V.A. Boyko, A.B. Gil’varg, S.A. Pikuz, A. Ya. Jayenov and A. Yu. Chugunov, Instr. Exp. Techniq. 23, No.4. Part 2, 1028 (1980).
[10] M. Nisoli, V. Pruneri, V. Mangi, S. DeSilvestri, G. Dellepiane, D. Comoretto, C. Cuniberti and J. LeMoigne, Appl. Phys. Lett. 65, 590 (1994).
[11] Y. Okaya, Acta Crystallogr. 19, 879 (1965).
[12] S.K. Geetha, R. Perumal, S. Moorthy Babu and P.M. Anbarasan, Cryst. Res. Technol. 41, 221 (2006a).
[13] K. Ambujam, K. Rajarajan, S. Selvakumar, I. Vetha Pothekar, Ginson A. Joseph and P. Sagayaraj, J. Cryst. Growth 286, 440 (2006b).
[14] R. Mohan Kumar, D. Rajan Babu, D. Jayaraman, R. Jayavel and K.Kitmura, J. Cryst. Growth 275, 1935 (2005b).
[15] N.R. Dhumane, S.S. Hussaini, V.G. Dongre and Mahendra D. Shirsat, Opt. Mater. 31, 328 (2008a).
[16] Monica Enculescu, Opt. Mater. 32, 281 (2009)
[17] K. Uthayarani, R. Sankar and C.K. Shashidharan Nair, Cryst. Res. Technol. 43, 733 (2008b).
[18] M. Senthil Pandian, N. Balamurugan, G. Bhagavannarayana and P. Ramasamy, J. Cryst. Growth 310, 4143 (2008c).
[19] C.N.R. Rao, Ultraviolet and visible spectroscopy, chemical applications, Plenum Press, 1975.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.