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Abstract 
Trummer’s problem is the problem of multiplication of an n × n Cauchy matrix C by a vector. It 
serves as the basis for the solution of several problems in scientific computing and engineering [1]. 
The straightforward algorithm solves Trummer’s problem in O(n2) flops. The fast algorithm solves 
the problem in O(nlog2n) flops [2] but has poor numerical stability. The algorithm we discuss here 
in this paper is the celebrated multipoint algorithm [3] which has been studied by Pan et al. The 
algorithm approximates the solution in O(nlogn) flops in terms of n but its cost estimate depends 
on the bound of the approximation error and also depends on the correlation between the entries 
of the pair of n-dimensional vectors defining the input matrix C. 

 
Keywords 
Cauchy Matrix, Mulipoint Algorithm, Structure Matrices, Displacement Operators 

 
 

1. Introduction 
Computations with dense structured matrices have many applications in sciences, communications and engi-
neering. The structure enables dramatic acceleration of the computations and major decrease in memory space 
but sometimes leads to numerical stability problems. The best well-known classes of structured matrices are 
Toeplitz, Hankel, Cauchy and Vandermonde matrices. 

The computations with such matrices are widely applied in the areas of algebraic coding, control, signal 
processing, solution of partial differential equations and algebraic computing. For example, Toeplitz matrices 
arise in some major signal processing computations and the problem of multiplying Vandermonde matrix by a 
vector is equivalent to polynomial evaluation, whereas solving a Vandermonde system is equivalent to poly-
nomial interpolation. Moreover, Cauchy matrices appear in the study of integral equations and conformal map-
pings. The complexity of computations with n × n dense structured matrices dramatically decreases in compari-
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son with the general n × n matrices, that is, from the order of n2 words of storage space and nα  arithmetic op-
erations (ops) with 2.37 3α< ≤  in the best algorithms, to ( )O n  words of storage space and ( )logO n n  ops 
(see Table 1 below for more details). 

2. Some Basic Definitions 
Throughout this paper, we use the following notations;   denotes the set of nonnegative integers, +  is the 
set of positive real numbers, Z+ denotes the set of positive integers, and R denotes the set of real numbers. 

Definition 2.1. A matrix 
1

, , 0

n
i j i j

t
−

=
 =  T  is a Toeplitz matrix if , 1, 1i j i jt t + +=  for every pair of its entries ,i jt  

and 1, 1i jt + + . A matrix 
1

, , 0

n
i j i j

h
−

=
 =  H  is a Hankel matrix if , 1, 1i j i jh h − +=  for every pair of its entries ,i jh  and 

1, 1i jh − + . 
Definition 2.2. For a given vector ( ) 1

0
n

i iv −
==v , the matrix ( )V=V v  of the form 

1

, 0

nj
i i j

v
−

=
 =  V  is called a 

Vandermonde matrix. 
Definition 2.3. Given two vectors s and t such that i js t≠  for all i and j, the n × n matrix ( ),C=C s t  is a 

Cauchy (generalized Hilbert) where 

( )
1

, 0

1, .
n

i j i j

C
s t

−

=

 
=  

−  
s t  

For more details regarding the four classes of structured matrices, see Table 2 below. 
 

Table 1. Parameter and flops count. 

Matrices A size n × n Number of parameters for A Number of flops required for 
Multiplication by a vector 

General 2n  22 2n n−  

Toeplitz 2 1n −  ( )logO n n  

Hankel 2 1n −  ( )logO n n  

Vandermonde n  ( )2logO n n  

Cauchy 2n  ( )2logO n n  

 
Table 2. General definition of the four classes of structured matrices.  

Toeplitz matrices, 
1

, 0

n

i j i j
t

−

− =
 =  T  Hankel matrices, 

1

, 0

n

i j i j
h

−

+ =
 =  H  

0 1 1

1 0

1

1 1 0

n

n

t t t
t t

t
t t t

− −

−

−

 
 
 
 
 
 



 

  



 

0 1 1

1 2

1 2 2

n

n

n n n

h h h
h h h

h h h

−

− −

 
 
 
 
 
 





   



 

Vandermonde matrices, 
1

, 0

nj
i i j

v
−

=
=   V  Cauchy matrices, 

1

, 0

1
n

i j i j
x y

−

=

 
=  

−  
C  

1
0 0

1
1 1

1
1 1

1
1

1

n

n

n
n n

v v
v v

v v

−

−

−
− −

 
 
 
 
 
  





   



 

0 0 0 1

1 0 1 1

1 0 1 1

1 1   

1 1   

1 1 

n

n

n n n

x y x y

x y x y

x y x y

−

−

− − −

 
 − − 
 
 − − 
 
 
 
 − − 





  


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Remark 2.1. It is quite easy to verify that TJ and JT are Hankel matrices if T is a Toeplitz matrix, and HJ and 
JH are Toeplitz matrices if H is a Hankel matrix where J is the following reflection matrix, 

0 1

1 0

 
 =  
 
 

J . 

3. The Displacement Operators of Dense Structured Matrices 
The concept of displacement operators and displacement rank which was introduced by T. Kailath, S. Y. Kung, 
and M. Morf in 1979 and studied by Pan, Bini, and other authors is one of the powerful tools for studying and 
dealing with matrices that have structure. The displacement rank approach, when it was initially introduced, was 
intended for more restricted use [4], namely, to measure how “close” to Toeplitz a given matrix is. Then the idea 
turned out to be even more powerful, thus it was developed, generalized and extended to other structured ma-
trices. In this section, we consider the most general and modern interpretation of the displacement of a matrix. 

The main idea is, for a given structured matrix A, we need to find an operator L that transforms the matrix into 
a low rank matrix ( )L A  such that one can easily recover A from its image ( )L A  and operate with low rank 
matrices instead. Such operators that shift and scale the entries of the structured matrices turn out to be appropriate 
tools for introducing and defining the matrices of Toeplitz-like, Hankel-like, Vandermonde-like, and Cauchy-like 
types [5]. 

Definition 3.1. For any fixed field   such as the complex field   and a fixed pair { },M N  of operator 
matrices, we define the linear displacement operators : m n m nL × ×→   of Sylvester type, 

( ) ( ),L = ∇ = −M NA A MA AN  

and Stein type, 

( ) ( ),L = ∇ = −M NA A A MAN . 

The image ( )L A  of the operator L is called the displacement of the matrix A. The operators of Sylvester and 
Stein types can be transformed easily into one another if at least one of the two associated operator matrices is 
non-singular. The following theorem explains this fact. 

Theorem 3.1. 1, ,−∇ = ∇M N M N
M  if the operator matrix M is non-singular, and 1, , −∇ = −∇M N M N

 if the op-  

erator matrix N is non-singular. 
Proof: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1

1

1 1
, ,

1 1 1
, ,

,

.

A

N

−

−

− −

− − −

∇ = − = − = − = ∆

∇ = − = − = − = − − = −∆

M N M N

M N M N

A MA AN M MM AN M A M AN M A

A MA AN MAN N AN MAN A N A MAN A N
 

The operator matrices that we will be using are the matrices Zf, T
fZ ,  and ( )D d  where Zf, is the unit 

f-circulant matrix, 

0 0
1

0
0 1 0

f

f 
 
 =
 
 
 



  

 



Z  

f is any scalar, T
fZ  is the transpose of Zf, and ( )D d  is a diagonal matrix with diagonal entries 0 1, , nd d − , 

( ) ( )

0

1

0

1

     0    0
0             

diag .
              0

0  0         

n
i i

n

d

D d

d

−

=

−

 
 
 = =  
  
 



 

 



d  

We may use the operator matrices Z1 and Z0 in the case of Toeplitz matrices, Z1 and T
1Z  in the case of Han-
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kel matrices, Z0 and ( )D v  in the case of Vandermonde matrices, and ( )D x  and ( )D y  in the case of 
Cauchy matrices. However, there are other choices of operator matrices that can transform these matrices to 
low rank. 

4. The Correlation of Structured Matrices to Polynomials 
The product 

( )V =x p v                                        (1) 

represents the vector ( )iv=v  of the values of the polynomial ( ) j
j

j
p x p x= ∑  on a node set { }.ix  

If ( ) 1

0

ni
n i

w
−

=
= =x w  is the vector of the nth roots of unity, 

2π 2π 2πe cos sin ,  where 1,  and 1
i nn

n nw i i w
n n

   = = + = − =   
   

, 

then the matrix 
( )V

F
n

=
w

 and multipoint evaluation turns into discrete Fourier transform which takes only  

( )logO n n  ops and allows numerically stable implementation according to [6]. If we express ( )V x  in Equa-
tion (1) via Cauchy matrices we will get 

( ) ( ) ( ) ( )
1 1

00

1 dia 1 , diag .
n nn

i i ii
V x x C x w w F

n
− −

==
= −                         (2) 

Here, ( ) ( ) 1

0
diag n

i i
D h −

=
=h  for ( ) 1

0

n
i i

h h −

=
=  denotes n × n diagonal matrix with diagonal entries 0 1, , nh h − . 

Note that the numerical stability is very important in approximation algorithm for multipoint polynomial 
evaluation. It relies on expressing ( )V x  in terms of Cauchy matrices as in Equation (2). Clearly in Equation 
(2), the product ( )V x  by a vector has been reduced to ones with Cauchy, which brings us to Trummer’s prob-
lem, that is, the problem of multiplication of Cauchy matrix by a vector. Its solution by multipoint algorithm ([6], 
pp. 261-262) leads to multipoint polynomial evaluation based on Equation (2) which is fast in terms of ops and 
numerically stable as it was proved by Pan. 

We may vary the vector x by linearly mapping it to the vector a b= +y x e  where we can take ( ) 1
01 n

i
−

=
=e  

and 0 a≠  and b are any scalars. 

5. New Transformation of Cauchy Matrices 
As we mentioned earlier, Trummer’s problem is the problem of multiplication of an n × n Cauchy matrix C by a 
vector which is the basis for the solution of many important problems of scientific computing and engineering. 
The straightforward algorithm solves Trummer’s problem in ( )2O n  flops. The fast algorithm solves the prob-
lem in ( )2logO n n  flops but has poor numerical stability. 

The algorithm we presenting in this paper approximates the solution in ( )logO n n  flops in terms of n. How-
ever, its cost estimate depends on the bound of the approximation error and on the correlation between the en-
tries of the pair of n-dimensional vectors defining the input matrix C. This algorithm is numerically stable as we 
will see throughout this section and the next section. 

The main goal in this paper is to enrich the power of the multipoint algorithm by introducing and proving 
some new expressions for Cauchy matrix via other Cauchy matrices [7], which we may vary by changing one of 
their basis vectors. Under a certain choice of such a vector, the solution of Trummer’s problem will be simpli-
fied; thus, the power of the multipoint algorithm can be developed as we will see in the next section. 

Therefore, we will achieve our goal by using a simple transformation of the useful basic formula of [8], and 
the resulting expressions for C will give us further algorithmic opportunities. 

Definition 5.1. For a pair of n-dimensional vectors ( ) 1

0

n
i i

a −

=
=a , ( ) 1

0

n
j j

b
−

=
=b  let ( ) ( )( ) 1

, 0
, 1

n
i i i j

C a b
−

=
= −a b ,  

( ) ( ) 1

, 0

nj
i i j

V a
−

=
=a , ( ) ( ) 1

, , 0

n
i j i j

H h
−

=
=a , , ,i j i jh a=  for 1i j n+ ≤ − , , 0i jh =  for 1i j n+ ≥ − , denote the asso-  

ciated n × n Cauchy, Vandermonde, and triangular Hankel matrices, respectively. For a vector ( ) 1

0

n
i i

a −

=
=a  with  

i ja a≠  for i j≠  a Cauchy degenerate matrix ( )C a  has the diagonal entries zeros and the ( ), thi j  entry  
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( )1 i ja a−  for i j≠ . Furthermore, ( )p xb  denote the polynomial ( ) ( )1
0

n
jjp x x b−

=
= −∏b  and its derivative  

( ) ( )( )
11

0 0
nn

ji j j ip x x b−−

= = ≠
′ = −∑ ∏b . Lastly, 

( ) ( )( ) ( )( ) 11 1
00 0

, diag diag
nn n

i i jji i
D p a a b

−− −

== =
= = −∏ba b  

and 

( ) ( )( ) ( )( )1 11
0 00

diag diag
n nn

i i ji jj
D p b b b

− −−

= ==
′ ′= = −∑ ∏bb  

denote a pair of n × n diagonal matrices, defined by the vectors a and b. 
Theorem 5.1. (See [8]) Let i jc d≠ , ,  0,1, , 1i j n= − . Then 

( ) ( ) ( ) ( ) ( )1 T, ,C D V H V−=c d c d c d d                              (3) 

( ) ( ) ( ) ( ) ( )1 1, , .C D V V D− − ′=c d c d c d d                             (4) 

The main idea of the transformation of the basic vectors defining the problem is taken from [9], where this 
idea was used for multipoint polynomial evaluation and interpolation. 

Definition 5.2. Trummer’s problem is the problem of computing the vector ( ),C a b v  for three given vectors  

( ) 1

0

n
i i

a −

=
=a , ( ) 1

0

n
j j

b
−

=
=b  and ( ) 1

0

n
j j

v
−

=
=v  where i ja b≠  for all pairs i, j. Trummer’s degenerate problem is  

the problem of computing the vector ( )C a v  for two given vectors ( ) 1

0

n
i i

a −

=
=a  and ( ) 1

0

n
j j

v
−

=
=v  where 

i ja a≠  for i j≠ . 
Definition 5.3. ( )exp 2πkw i k= , where 1i = − , is a primitive thk  root of 1, 1k

kw = , 1l
kw ≠  for 

1, , 1l k= −
. 

Lemma 5.1. ( )1
0 0

lk i
kl w−

=
=∑  for 1, , 1i k= − . 

Approximate solution of Trummer’s degenerate problem can be reduced to Trummer’s problem due to the 
next simple result. 

Lemma 5.2. ( ) ( ) ( )1
01 ,h i h

hiC h C w Oδ δ−

=
= + +∑c c ec  as 0δ → , where ( ) 1

01 n
j
−

=
=e  is the vector filled with 

the values one and δ  is a scalar parameter. 

Proof: ( ) ( ) ( ) ( ) ( )( )1 1
0 0 01 1 1

lh hg g h
i j h i j h i j i jg l gc c w c c w c c h c c Oδ δ δ− ∞ −

= = =
− − = − − = − +∑ ∑ ∑  due to Lem-  

ma 5.1. 

6. Transformations of Cauchy Matrices and Trummer’s Problem 
Theorem 6.1. For a triple of n-dimensional vector ( ) 1

0

n
i i

b −

=
=b , ( ) 1

0

n
j j

c
−

=
=c , ( ) 1

0

n
k k

d −

=
=d  where i jb c≠ , 

j kc d≠ , k id b≠  for ,  ,  0, , 1i j k n= −  we have the following matrix equations: 

( ) ( ) ( ) ( ) ( ) ( )1 1 , ,, ,C D V V D C− −=c d c d c db b b d                          (5) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1, ,, , ,,C D D C DD C− −′=c d c d c c b b db b b d                      (6) 

( ) ( ) ( ) ( ) ( ) ( )T T 1, , ,,C C D V V D− −=c d c c d db cb b                          (7) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1, , , ., ,,C C D D C D D− −− ′=c d c c db bd d cb b b                     (8) 

Proof Theorem 6.1: 
1) Proof of Equation (5): 
From Equation (3), we obtain ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1T, , .C V H V V D− − −− −=b b bd bd d d  This is done by taking the 

inverse of Equation (3) and replacing the vectors c, d by b, d. Then substitute the equation 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1T, ,C V H V V D− − − −−= d bd bdb b d  

and Equation (3) for ( ),C c d  into the following matrix identity 

( ) ( ) ( ) ( )1, ,, ,C C C C−=c d d bc bd d . 
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This gives: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T 1 1

1 T T 1 1

1 T T 1 1

1 1 1

1 1

, , , ,

  , , ,

 , , ,

, , ,

    ., , ,

C C V

D V

D V

D V

H V D C

H V V H V D C

H V V H V D C

H H V D C

D CD VV

− − −

− − − −

− − − −

− − −

− −

 
 

 
 

=

=

=

=

=

 
 

 
 

c d c d d d d d

c d c d d d d d d

c d c d

b b b

b b b

bd d b b

b b b

b

d d d

c d c d d d d

bc d bd c d

 

Clearly, the last one is just Equation (5). 
2) Proof of Equation (6): 
From Equation (4); ( ) ( ) ( ) ( ) ( )1 1, ,C D V V D−− ′=c d c d c d d  replace the vector d by b, then we will get: 

( ) ( ) ( ) ( ) ( )1 1  , ,C D V V D− − ′=b bc bc c b . 

Then solve for ( ) ( ) 1V V −c b ; 

( ) ( ) ( ) ( ) ( )1 1, ,V V D C D− −′=b b bc bc c . 

Now substitute the last expression into Equation (5) and obtain the following: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

, , , , , ,

, , , , ,

C D D C D D C

D D C D D C

− −

− −

 ′=  

′=

c d c d c c d d

c d c

b b b b b

b b b b d bc d
 

which is obviously Equation (6). 
3) Proof of Equation (7): 
From Equation (4); ( ) ( ) ( ) ( ) ( )1 1, ,C D V V D− − ′=c d c d c d d  first solve for ( ) ( )1V D− ′d d  to get:  

( ) ( ) ( ) ( ) ( )1 1 , ,V D V D C− −′ =d d c c d c d , 
replace ↔c d  to get: 

( ) ( ) ( ) ( ) ( )1 1 , ,V D V D C− −′ =c c d d c d c . 

Now, replace the vector d by b and obtain 

( ) ( ) ( ) ( ) ( )1 1 , ,V D V D C− −′ =c c cb b b c .                           (9) 

Since ( ) ( )T, ,C C= −c d d c  we have also ( ) ( )T, ,C C− =c d d c . 
Start with Equation (4) which is ( ) ( ) ( ) ( ) ( )1 1, ,C D V V D− − ′=c d c d c d d  and replace the vector ↔c d  to  

obtain ( ) ( ) ( ) ( ) ( )1, ,C D V V D− ′=d c d c d c c , then use the equation ( ) ( )T, ,C C− =c d d c  to get: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

TT 1

T1 1

T1 1

T T 1T

, , (from Equation (9))

, , ,

,

,

,

, ,

, , .

C C D V V D

D V V D C

D V V D C

C D V V D

−

− −

− −

− −

 ′− = =    

  =   

 =  

=

c d d c d c d c c

d c d c c

d c d c c

c c d d

b b b

b b b

b b cb

 

Now replace ( )T,C b c  in the last equation by ( ),C− c b  (that is, use the identity ( ) ( )T,,C C− =b bc c ) 

( ) ( ) ( ) ( ) ( ) ( )T T 1,, ,,C C D V V D− −− = −c d c c d db cb b . 

This implies that ( ) ( ) ( ) ( ) ( ) ( )T T 1, , ,,C C D V V D− −=c d c c d db cb b  which is Equation (7). 
4) Proof of Equation (8): 
From Equation (4): ( ) ( ) ( ) ( ) ( )1 1, ,C D V V D− − ′=c d c d c d d  solve for ( ) ( ) 1V V −c d  and obtain 
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( ) ( ) ( ) ( ) ( )1 1, .,D C D V V −−′ =c d c d d c d  

Expand Equation (4) ( ) ( ) ( ) ( ) ( )1 1, ,C D D V V− −′ =c d c d d c d , and change ↔c d  and ↔d b  to get the 
equation: ( ) ( ) ( ) ( ) ( )1 1, , D V VD C − −′ =b b b d bd d  and take the transpose of both side of the last equation to get: 

( ) ( ) ( ) ( ) ( )T T T1 , ,V V D C D− −= ′ db bd db b .                        (10) 

Substitute Equation (10) and the matrix equation ( ) ( )T ,,C C= −b bd d  into Equation (7): 

( ) ( ) ( ) ( ) ( ) ( )T T 1  , , , ,C C D V V D− − 
 = b b bc d c c d d c  

( ) ( ) ( ) ( ) ( ) ( ) ( )T1 1  , , , ,, ,C C D D C D D− −′=  
 c d c c d b db db cb b  (this is from Equation (10)) 

( ) ( ) ( ) ( ) ( ) ( )1 1, , , ,,C D D C D D− −′= − c c d d db b b cb b  which is Equation (8). 

7. Approximate Stable Solutions of Trummer’s Problems 
The algorithm we are studying and presenting in this section depends on the multipoint algorithm which ap-
proximates the solution of Trummer’s problem in ( )O n  ops in terms of n, and works efficiently for a large 
classes of input vectors but sometimes has problems with some of the input vectors, especially if the ratio of the 
input vectors is close to 1. 

Recall, the power series expansion: 2 3

0
1i

i
x x x x

∞

=

= + + + +∑   this series converges whenever 1x <  and 

has a sum 1
1 x−

. 

The basis for the algorithm is the following expressions: 

0

1 1 1

1

k
j

ki j i ij
i

i

t
s t s st

s
s

∞

=

 
= =  −     −     

∑                              (11) 

where ( ) 1

0

n
i i

s −

=
=s  and ( ) 1

0

n
i i

t −

=
=t . Clearly this series converges whenever 1j

i

t
s

< . Now for large M the ex-

pression 
0

1
kM

i

ki i

t
s s=

 
 
 

∑  approximates 1 .
i js t−

 On the other hand 1

i js t−
 can be also written as 

0

1 1 1 .

1

k

i

ki j j ji
j

j

s
s t t tst

t

∞

=

 
= = −   −     − −      

∑                            (12) 

Once again for large M the expression 
0

1  
M

i

kj j

s
t t=

 
−   

 
∑  approximate 1

i js t−
. 

The product of Cauchy matrix by a vector is ( )
1

1

0 0

,
n

n
j

j i j i

v
C

s t

−
−

=
=

 
=   − 
∑t vs . This is just Trummer’s problem. If 

we simplify this expression, we get the following approximations: 

1 1 1 1

1
0 0 0 0 0 0 0 0 0

1
k k

kn M n M n M n M M
j j j j k ki i i

j i k ik k
j k j k j k j k ki j j j j j j j j

v v v vs s sv s z s
s t t t t t t t t

− − − −

+
= = = = = = = = =

       
− = − = − = − =              −        

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  
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where 
1

1
0

n
j

k k
j j

v
z

t

−

+
=

= −∑ . 

For any n × n Cauchy matrix ( ),C s t , the approximation requires ( )O nM  ops for all i and it is numerically 
stable. 

If either of the ratios i

j

s
t

 or j

i

t
s

 is small, then the approximate error will be small for large M. However, 

there will be a problem whenever one of the ratios is close to 1, in this case, the error will be large. 

8. Discussions and Conclusions 
Recall the following two formulas from Section 5: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1, , ,, ,,C D D C D D C− −′=s s s st t q q q q t q t ,                    (13) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1, , ,, ,,C C D D C D D− −′= −t q q q q t t q ts s s s .                   (14) 

Equations (13) and (14) are Vandermonde-free and Hankel-free, but they enable us to transform the basis 
vectors s and t for ( ),C s t  into the two pairs of basis vectors s, q and q, t for any choice of the vector ( )jq=q , 

.j iq s≠ , j kq t≠ , ,  ,  0, , 1i j k n= − . Then Trummer’s problem is reduced to the evaluation of the diagonal 
matrices ( ) 1D −′ q , ( ),D u v  and/or ( ) 1,D −u v  for ( ),s t , ( ),q t , ( ),s q , ( ),q s , ( ),t q  and/or ( ),t s  and 
also reduced to recursive multiplication of the above matrices and ( ),C q t  and ( ),C s q  by vectors. 

To compute the matrices ( )D′ v , ( ),D u v  and ( ) 1,D −u v  for given ( ),u v  in general, we first compute 
the coefficients of the polynomial ( ) ( )1

0
n

u jjp x x v−

=
= −∏  and then ( ).v ip u  

And ( )u ip v′ , 0, , 1i n= − . We compute the coefficients by simply pairwise multiply the linear factors 
jx v−  first and then, recursively, the computed products. The computation is numerically stable and uses 

( )2logO n n  ops. Multipoint polynomial evaluation can be computed in ( )2logO n n  arithmetic operations 
(ops), but it is not numerically stable; therefore the fast and numerically stable approximation techniques of [10] 
can be used instead. If we choose any vector ( ) 1

0

n
i i

q −

=
=q , we will simplify the evaluation of the matrices 

( ) ( ) ( )1,  , and  where  or , .D D D− ′ = =u v u v q u q v q  

For example, if 

,    0,1, , 1i
i nq aw i n= = −                                (15) 

is the scaled nth roots of unity for a scalar a and ( )exp 2πnw i n= , where 1.i = −  Then 

( ) ( ) ( )1 1
0 ,     n i n n n

nip x x aw x a p x nx− −
=

′= − = − =∏q q  

and the matrices ( ),D u q  and ( )D q  can be immediately evaluated in ( )logO n n  flops. In addition, any po-
lynomial ( )p x  of degree n can be evaluated at the scaled nth roots of 1 in ( )logO n n  ops by means of Fast 
Fourier Transform (FFT). Trummer’s problem is the multiplication of ( ),C q t  by a vector or ( ),C s q  by a 
vector. Its solution can be simplified under appropriate choice of the vector q. One way to do it is to restrict q to 
the above choice in Equation (15). Even with this particular choice, yet the scalar a allows faster convergence of 
the power series of the Multipole Algorithm presented in Section 7. This can be extended to the Equations (5) 
and (7). On the other hand, one can linearly map the vector q into a b= +y q e , where ( ) 1

01 n
j
−

=
=e , and 0 a≠  

and b are any scalars. In addition, the computations of the diagonal matrices will be simplified if our choice of 
the vector q is the scaled nth root of unity. 

Remark 8.1. Trummer’s problem frequently arises for Cauchy degenerate matrices that are defined as fol-  

lows: ( ) ( ),i jC c=s , , 0i ic = , ,
1

i j
i j

c
s s

=
−

 for all pairs of distinct i and j. 

We have 

( ) ( ) ( )1
0

1 ,  as 0h g h
hgC C w O

h
δ δ δ−

=
= + + →∑s s s e  
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where ( ) 1
01 n

j
−

=
=e , ( )is=s , δ  is a scalar parameter. Hence, 

( )( )1 1
0 0 0

1 1 1
l

g
h h hh

gg l g
i j i j i ji j h

w h O
s s s s s ss s w

δ δ
δ

− ∞ −

= = =

 
= = +  − − −− −  

∑ ∑ ∑  

because 1
0 0n gl

nl w−

=
=∑  for 1, , 1g n= − . 
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Abstract 
In this paper, we make an initial value investigation of the unsteady flow of incompressible visc-
ous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium 
under the influence of a uniform magnetic field of strength H0 inclined at an angle of inclination α 
with normal to the boundaries taking hall current into account. The perturbations are created by a 
constant pressure gradient along the plates in addition to the non-torsional oscillations of the up-
per plate while the lower plate is at rest. The flow in the porous medium is governed by the 
Brinkman’s equations. The exact solution of the velocity in the porous medium consists of steady 
state and transient state. The time required for the transient state to decay is evaluated in detail 
and the ultimate quasi-steady state solution has been derived analytically. Its behaviour is com-
putationally discussed with reference to the various governing parameters. The shear stresses on 
the boundaries are also obtained analytically and their behaviour is computationally discussed. 

 
Keywords 
Hall Effects, Unsteady Rotating Flows, Three-Dimensional Flows, Parallel Plate Channels,  
Incompressible Viscous Fluids, Brinkman’s Model 

 
 

1. Introduction 
The rotating flow between parallel plates is a classical problem that has important applications in magneto hydro 
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dynamic (MHD) power generators and pumps, accelerators, aerodynamic heating, electrostatic precipitation po-
lymer technology, petroleum industry, purification of crude oil and fluid droplets, sprays, designing cooling 
systems with liquid metal, centrifugal separation of matter from fluid and flow meters. The flows of fluids 
through porous medium are very important particularly in the fields of agricultural engineering for irrigation 
processes; in petroleum technology to study petroleum transport; in chemical engineering for filtration and puri-
fication processes. A series of investigations have been made by (Raptis et al., 1981 [1]; Raptis et al., 1981 [2], 
Raptis et al., 1982 [3]) into the steady of two-dimensional flow past a vertical wall for constant permeability of 
the porous medium. (Singh and Verma, 1995 [4]) analyzed an oscillatory three-dimensional flow through a 
porous medium when the permeability varied in space periodically. (Singh et al., 2000 [5]) investigated further a 
three-dimensional fluctuating flow and heat transfer through a porous medium when the permeability varied 
both in time and space. Further the flow of electrically conducting fluids in channels and pipes under the effect 
of transverse magnetic field occur in magnetohydrodynamic (MHD) generators, accelerators, pumps and flow 
meters. In view of these and many other important applications of these flows a number of scholars have shown 
their interest. Notable amongst them are (Shercliff, 1965 [6]; Ferraro and Plumpton, 1966 [7]; Crammer and Pai 
1973, [8]). (Yen and Chang, 1964 [9]) studied the effects of wall electrical conductance on the MHD Couette 
flow. A magnetohydrodynamic (MHD) flow in a duct has also been studied by (Chang and Lundgren, 1961 [10]). 
(Attia and Kotb, 1996 [11]) investigated the two dimensional MHD flow between two porous, parallel, infinite, 
insulated, horizontal plates and the heat transfer through it when the lower plate was kept stationary and the up-
per plate was moving with uniform velocity. Very recently (Singh and Mathew, 2008 [12]) studied the injec-
tion/suction effect on a hydromagnetic oscillatory flow in a horizontal porous channel in a rotating system. The 
Hall current effect on the velocity and temperature fields of an unsteady Hartmann number has also been studied 
by (Attia, 2006 [13]). (Singh and Sharma, 2001 [14]) studied a three-dimensional Couette flow with transpira-
tion cooling in the presence of stationary magnetic field applied perpendicular to the planes of the insulated 
plates. Another aspect of the above three-dimensional Couette flow when the magnetic field is fixed with the 
moving plate has also been investigated by (Singh, 2004 [15]). There are various other industrial applications of 
flows of electrically conducting fluids in the fields of geothermal systems, nuclear reactors, filtration, etc. where 
the conducting fluid flows through a porous medium which also rotates about an axis. In view of the importance 
of rotating flows a number of studies have appeared in the literature. (Mazumder, 1991 [16]) studied an oscilla-
tory Ekman boundary layer flow bounded by two horizontal plates one of which is oscillating and the other is at 
rest. (Ganapathy, 1994 [17]) presented an alternative solution to the above problem. (Mazumder et al., 1976 [18]) 
analyzed the Hall effects on combined free and forced convection hydromagnetic flow through a channel. 
(Singh, 2000 [19]) studied the effects of transversely applied uniform magnetic field on oscillatory flow between 
two parallel flat plates when the entire system rotates about an axis normal to the planes of the plates. Hartman 
and Lazarus (1937 [20]) studied the influence of a transverse uniform magnetic field on the flow of a viscous 
incompressible electrically conducting fluid between two infinite parallel stationary and insulating plates. Then 
the problem was extended in numerous ways. The Hall current is important and it has a marked effect on the 
magnitude and direction of the current density and consequently on the magnetic force. The unsteady hydro 
magnetic viscous flow through a nonporous or porous medium has drawn attention in the recent years for possi-
ble applications in geophysical and cosmical fluid dynamics. Debnath et al. (1979 [21]) have studied the effects 
of Hall current on unsteady hydro magnetic flow past a porous plate in a rotating fluid system and the structure 
of the steady and unsteady flow fields is investigated. Rao and Krishna (1981 [22]) studied Hall effects on the 
non-torsionally generated unsteady hydro magnetic flow in semi-infinite expansion of an electrically conducting 
viscous rotating fluid. Krishna and Rao (1982 [23]) discussed the Stokes and Eckmann problems in magneto 
hydro dynamics taking Hall effects into account. M. VeeraKrishna and S. V. Suneetha (2009 [24]) discussed 
Hall effects on unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating plates 
through porous medium under the influence of a uniform transverse magnetic field. S. V. Suneetha et al. (2010 
[25]) discussed Hall effects on unsteady rotating magneto hydro dynamic flow of an incompressible homogene-
ous second grade fluid through a porous half space. Recently Hall effects on an unsteady MHD flow of a vis-
cous incompressible electrically conducting fluid in a horizontal porous channel with variable pressure gradient 
in a rotating system have been studied by Sanatan Das and Rabindranath Jana (2013 [26]). In this paper, we 
make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid 
non-conducting rotating parallel plates bounded by a porous medium taking hall current into account. 
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2. Formulation and Solution of the Problem 
We consider the unsteady flow of an incompressible electrically conducting viscous fluid bounded by porous 
medium with two non-conducting rotating parallel plates. A uniform transverse magnetic field is applied to 
z-axis. In the presence of strong magnetic field a current is inclined in a direction normal to the both electric and 
magnetic field viz. Magnetic field of strength H0 inclined at angle of inclination α  to the normal to the boun-
daries in the transverse xz-plane. The inclined magnetic field gives rise to a secondary flow transverse to the 
channel. The hydro magnetic flow is generated in a fluid system by non-torsional oscillations of the upper plate. 
The lower plate is at rest. The origin is taken on the lower plate and the x-axis parallel to the direction of the up-
per plate. Since the plates are infinite in extent, all the physical quantities except the pressure depend on z and t 
only. In the equation of motion along x-direction, the x-component current density— sine z oJ Hµ α  and the z- 
component current density sine x oJ Hµ α . We choose a Cartesian system 0 (x, y, z) such that the boundary walls 
are at z = 0 and z = l. The flow through porous medium governed by the Brinkman equations. The unsteady hy-
dro magnetic equations governing flow through porous medium under the influence of a transverse magnetic 
field with reference to a rotating frame are 

sind2
d

2
e z o

2

J Hu 1 p uw u
t ρ x kz

µ α νν
ρ

∂ ∂
+ Ω = − + − −

∂ ∂
                        (1) 

2

2

sind2
d

e x oJ Hw wu w
t kz

µ α νν
ρ

∂
− Ω = + −

∂
                           (2) 

where, (u, w) is the velocity components along O (x, z) directions respectively. ρ  is the density of the fluid, 
eµ  is the magnetic permeability, ν  is the coefficient of kinematic viscosity, k is the permeability of the me-

dium, oH  is the applied magnetic field. When the strength of the magnetic field is very large, the generalized 
Ohm’s law is modified to include the Hall current, so that 

( )
0

e e
eJ J H E q H

H
ω τ

σ µ+ × = + ×                               (3) 

where, q is the velocity vector, H is the magnetic field intensity vector, E is the electric field, J is the current 
density vector, eω  is the cyclotron frequency, eτ  is the electron collision time, σ  is the fluid conductivity 
and, eµ  is the magnetic permeability. In Equation (3) the electron pressure gradient, the ion-slip and thermo- 
electric effects are neglected. We also assume that the electric field E = 0 under assumptions reduces to 

0sin sinx z eJ mJ H wα σµ α− = −                               (4) 

0sin sinz x eJ mJ H uα σµ α+ =                                (5) 

where e em ω τ=  is the Hall parameter. 
On solving Equations (4) and (5) we obtain 

( )0
2 2

sin
sin

1 sin
e

x
H

muJ w
m

σµ α
α

α
= −

+
                              (6) 

( )0
2 2

sin sin .
1 sin

e
z

HJ u mw
m

σµ α α
α

= +
+

                              (7) 

Using the Equations (6) and (7), the equations of the motion with reference to rotating frame are given by 

( ) ( )
2 2 22

0
2 2 2

sin1 d2 sin
d 1 sin

e Hu p uw u mw u
t x kz m

σµ α νν α
ρ ρ α

∂ ∂
+ Ω = − + + + −

∂ ∂ +
                (8) 

( ) ( )
2 2 22

0
2 2 2

sind2 sin .
d 1 sin

e Hw w muu w w
t kz m

σµ α νν α
ρ α

∂
− Ω = − − −

∂ +
                   (9) 

By combining the Equations (8) and (9), we get. 
Let ,q u iw= +  
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( )
2 2 22

2
2

sin12 .
1 sin
e oHq p qiK q q q

t x im kz
σµ α νν

ρ ρ α
∂ ∂ ∂

− = − + − −
∂ ∂ +∂

                      (10) 

The boundary and initial conditions are 
0, 0, 0q t z= ≤ =                                     (11) 

e e , 0, .i t i tq a b t z lω ω−= + > =                                (12) 

We introduce the following non dimensional variables are 
2 2

* * * * * *
2 2, , , , , .z ql t l plz q t p

l ll
ν ω ξω ξ

ν ν ρν
= = = = = =  

Using non-dimensional variables, the governing equations are (dropping asterisks) 

( )
2 2 2

1
2

sin
1 sin

q p q M q D q
t x imz

α
α

−∂ ∂ ∂
= − + − −

∂ ∂ +∂
                          (13) 

where, 
2 2 2

2 0e H l
M

v
σµ

ρ
=  is the Hartmann number; 

2 2
2 lK

ν
Ω

=  is the rotation parameter; 

2
1 lD

k
− =  is inverse Darcy parameter and; 

e em ω τ=  is the Hall parameter. 

We choose 1
0 1e

i tp P P
x

ω∂
= +

∂
 is the prescribed of pressure gradient, then the Equation (13) reduces to 

( ) ( )
1

2 2 2
1 2

0 1 2

sine 2 .
1 sin

i tq q MP P D iK q
t imz

ω α
α

− ∂ ∂
= − + + − + +  ∂ +∂  

                  (14) 

Corresponding initial and boundary conditions are 

0, 0, 0q t z= ≤ =                                    (15) 

e e , 0, 1.i t i tq a b t zω ω−= + > =                               (16) 

Taking Laplace transform of Equation (14) using initial condition (15) the governing equations in terms of the 
transformed variable reduces to  

( )
2 2 2

1 2 0 1
2

1

d sin 2 .
1 sind

P Pq M D iK s q
im s s iz

α
α ω

− 
− + + + = − −  + − 

                   (17) 

The relevant transformed boundary conditions are 

0, 1,q z= =                                      (18) 

, 0.a bq z
s i s iω ω

= + =
− +

                               (19) 

Solving the Equation (17) and making use of the boundary conditions (18) and (19), we obtain  

( )
0 1

1 1 2 2
1 1 1

cosh sinh
P Pq A z B z

s s i
λ λ

λ λ ω
= + + +

−
                       (20) 

where  
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( )
0 1
2 2

1 1 1

P PA
s s iλ λ ω

= − −
−

, 

( ) ( )
0 01 1

12 2 2 2
1 1 1 1 1 1 1

1 cosh
sinh

P PP Pa bB
s i s i s s i s s i

λ
λ ω ω λ λ ω λ λ ω

  
= − + − − + +   − + − −   

 

( )
2 2

1 2
1

sin 2 .
1 sin
Ms D iK

im
αλ
α

− 
= + + +  + 

 

Taking inverse Laplace transform to the Equation (20), we obtain 

1

30 1 0 1 1 20

1 1 1 1 1 2 3

0 1 1 1 11 1

1 1 1 1 11 1

0 4 41 1

4 4 44

sinhsinh cosh sinh sinh
e e

sinh sinh sinh sinh

cosh sinh cosh sinh
e

sinh sinh

cosh sinh c
sinh

i t i t

a t

a zP a z P a a z a zP
q a b

a a a a a a a

P a z a z a a zP P
a a i a ia a

P a z a zP P
a a aa

ω ω

ω ω

−

−

= − + + +

 
+ − − +  + + 

+ − + −

( )
( )

( )
( )

( )

1

2 2
1

4 4 1

44

π0 1
2 2 2 2 2 2 2 2 2 2 2 2

1 2 3 1 1 1

osh sinh
e

sinh

cos π 1 cos π 1
e

π π π π π π

i t

a n t

n

a a z P
aa

P z n P z naz bz
n a n a n n a n n a i

ω

ω

∞ − +

=

 
+  

 
 − −
 + − + + +

+ + + + + 
∑

      (21) 

( ) ( )

( ) ( )

2 2 2 2
1 2 1 2

1 2

2 2 2 2
1 2 1 2

3 4 1

sin sin2 , 2 ,
1 sin 1 sin

sin sin2 and 2 .
1 sin 1 sin

M Ma D iK a D iK i
im im

M Ma D iK i a D iK i
im im

α α ω
α α

α αω ω
α α

− −

− −

= + + = + + +
+ +

= + + − = + + +
+ +

 

The shear stresses on the upper plate and the lower plate are given by 

1 0

d dand .
d dU L

z z

q qτ τ
z z= =

   = =   
   

                              (22) 

3. Results and Discussion 
The flow is governed by the non-dimensional parameters M the Hartman number, D−1 the inverse Darcy para-
meter, K is the rotation parameter and m is the Hall parameter. The velocity field in the porous region is eva-
luated analytically its behaviour with reference to variations in the governing parameters has been computation-
ally analyzed. The profiles for u and w have been plotted in the entire flow field in the porous medium. The so-
lution for the velocity consists of three kinds of terms 1) steady state, 2) the quasi-steady state terms associated 
with non-torsional oscillations in the boundary, 3) the transient term involving exponentially varying time de-
pendence. From the expression (21), it follows that the transient component in the velocity in the fluid region  

decays in dimensionless time 
2 2

1 1

1 1max ,
π

t
a a n

  >  
+  

. When the transient terms decay the steady oscillatory  

solution in the fluid region is given by 

( ) 1 1 1
steady

1 1 1 1 1

sinh cosh sinh
sinh sinh

P a z P a a zPq
a a a a a

= − +                        (23) 

( ) 32
oscillatory

2 3

sinhsinh
e e .

sinh sinh
i t i ta za z

q a b
a a

ω ω−= +                         (24) 
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We now discuss the quasi steady solution for the velocity for different sets of governing parameters namely 
viz. M the Hartman number and D−1 the inverse Darcy parameter, K the rotation parameter, m is the Hall para-
meter, P0 & P1 the non dimensional pressure gradients, the frequency oscillations ω, a and b the constants re-
lated to non torsional oscillations of the boundary, for computational analysis purpose we are fixing the axial 
pressure gradient as well as a and b, and 0 1 10P P= = , π 4ω = , 1 π 4ω = , π 3α = . Figures 1-8 correspond-
ing to the velocity components u and w along the prescribed pressure gradient for different sets of governing 
parameters when the upper boundary plate executes non-torsional oscillations. The magnitude of the velocity u 
and w increases for the sets of values 0.1 ≤ z ≤ 0.3 as well as which reduces for all values of z with increase in 
the intensity of the magnetic field (Figure 1 and Figure 5). The resultant velocity q decreases with increasing 
the Hartmann number M. The magnitude of the velocity u decreases in the upper part of the fluid region 0.1 ≤ z 
≤ 0.2 while it experiences enhancement lower part 0.3 ≤ z ≤ 0.9 with increasing the inverse Darcy parameter D−1 
(Figure 2). The magnitude of the velocity w increases in the upper part of the fluid region 0.1 ≤ z ≤ 0.3, while it 
reduces in lower part 0.4 ≤ z ≤ 0.9 with increasing the inverse Darcy parameter D−1 (Figure 6). The resultant 
velocity q reduces with increasing the inverse Darcy parameter D−1. The magnitude of velocity u decreases in 
the upper part of the fluid region while it experiences enhancement lower part 0.3 ≤ z ≤ 0.9 and also the magni-
tude of velocity w increases throughout the fluid region (Figure 3 and Figure 7). However the resultant velocity 
q enhances with increasing the Hall parameter m. Finally we notice that, from (Figure 4 and Figure 8) the mag-
nitude of the velocity component enhances for 0.1 ≤ z ≤ 0.3 and z = 0.7, and reduces within the region 0.4 ≤ z ≤ 
0.6 and 0.8 ≤ z ≤ 0.9 with increase in rotation parameter K. while the velocity component w enhances for 0.3 ≤ z 
≤ 0.4 and z = 0.9, and reduces for 0.1 ≤ z ≤ 0.2, with increase in rotation parameter K. 

The shear stresses xτ  and yτ  on the upper plate have been calculated for the different variations in the go-
verning parameters and are tabulated in the Table 1, Table 2. On the upper plate we notice that the magnitudes 
of xτ  enhances the inverse Darcy parameter D−1, the hall parameter m, rotation parameter K decreases with in-
crease in the Hartmann number M (Table 1). The magnitude of yτ  decreases with increase in the Hartmann 
number M, the inverse Darcy parameter D−1 rotation parameter K and the Hall parameter m fixing the other pa-
rameters (Table 2). The similar behaviour is observed on the lower plate (Table 3, Table 4). We also notice that 
the magnitude of the shear stresses on the lower plate is very small compare to its values of the upper plate. 
 

 
Figure 1. The velocity profile for u with M. 

 

 
Figure 2. The velocity profile for u with D−1. 
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Figure 3. The velocity profile for u with m. 

 

 
Figure 4. The velocity profile for u with K. 

 

 
Figure 5. The velocity profile for w with M. 

 

 
Figure 6. The velocity profile for w with D−1. 
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Figure 7. The velocity profile for w with m. 

 

 
Figure 8. The velocity profile for w with K. 

 
Table 1. The shear stress ( )xτ  on the upper plate. 

M I II III IV V VI VII 

2 0.045274 0.052798 0.668876 0.052787 0.065525 0.084474 0.144589 

5 0.032905 0.043535 0.050487 0.043465 0.051896 0.052248 0.125547 

D−1 1000 2000 3000 1000 1000 1000 1000 

m 1 1 1 2 3 1 1 

K 2 2 2 2 2 3 4 

 
Table 2. The shear stress ( )yτ  on the upper plate. 

M I II III IV V VI VII 

2 −0.05356 −0.040556 −0.03558 −0.04955 −0.32511 −0.041125 −0.0044585 

5 −0.04555 −0.034255 −0.02622 −0.03512 −0.02222 −0.024451 −0.0001254 

D−1 1000 2000 3000 1000 1000 1000 1000 

m 1 1 1 2 3 1 1 

K 2 2 2 2 2 3 4 
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Table 3. The shear stress ( )xτ  on the lower plate. 

M I II III IV V VI VII 

2 0.008554 0.005542 0.002554 0.006658 0.003325 0.000144 −0.104595 

5 0.007885 0.004102 0.001001 0.005114 0.002114 0.000025 −0.002852 

D−1 1000 2000 3000 1000 1000 1000 1000 

m 1 1 1 2 3 1 1 

K 2 2 2 2 2 3 4 

 
Table 4. The shear stress ( )yτ  on the lower plate. 

M I II III IV V VI VII 

2 −0.000255 −0.000149 −0.000025 −0.000228 −0.000187 −0.0000145 −0.0000054 

5 −0.000246 −0.000124 −0.000012 −0.000193 −0.000078 −0.0000102 −0.0000029 

D−1 1000 2000 3000 1000 1000 1000 1000 

m 1 1 1 2 3 1 1 

K 2 2 2 2 2 3 4 

4. Conclusions 
1) The resultant velocity q enhances with increasing hall parameter m and rotation parameter K, and decreases 

with increasing inverse Darcy parameter D−1 as well as the Hartmann number M. 
2) On the upper plate the magnitude of xτ  enhances when increasing the hall parameter m; rotation parame-

ter K and the inverse Darcy parameter D−1 decrease with increase in the Hartmann number M. 
3) On the upper plate the magnitude of shear stress enhances when increasing the hall parameter M; rotation 

parameter K and the inverse Darcy parameter D−1 decrease with increase in the Hartmann number M. 
4) The similar behaviour is observed on the lower plate. 
5) The magnitude of the shear stresses on the lower plate is very small than the values of the upper plate. 
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Abstract 
In this paper, we have discussed a number of fitting methods to predict crop yield of soybean de-
pending on the nature of environment and a comparison is done between them on the basis of 
available data set. Later we have suggested a suitable method for the prediction of the crop yield 
on the basis of residual (error) terms. Statistical analysis is also used for getting the relationships 
between different components (variables) of available data set. At last, we have discussed about 
Chaos that can distort the whole mathematical analysis and a computational approach. 

 
Keywords 
Climate Change, Prediction, Chaos, Uncertainty 

 
 

1. Introduction 
Climate describes the ensemble sum of typical conditions of temperature, relative humidity, cloudiness, precipi-
tation, wind speed and direction and innumerable other meteorological factors that prevail regionally for ex-
tended periods [1]. Weather of a demographic region is defined by the hourly description of the climatic condi-
tions experienced by the inhabitants of that region. Here we discuss the soybean yield as a function of these en-
vironmental parameters.  

Many different approaches are used for constraining climate based crop yield predictions based on observa-
tions of past empirical change in the yield [2]. Here we setup distinct models based on the environmental model 
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parameters; significant correlations are calculated based on the inferred outputs. Meteorologists say that if only 
they could design an accurate mathematical model of the atmosphere with all its complexities, they could fore-
cast the weather with real precision. But this is an idle boast, immune to any evaluation, for any inadequate 
weather forecast would obviously be blamed on imperfections in the model. Catering to the often glitches in the 
models prepared the fidelity of the dynamics governing the respective models can be doubted. With the intro-
duction of computer simulations the weather predictions can be done in just a few minutes. We make use of 
such a technique to generalize the crop yield, and make prediction on the basis of the environmental factors like 
wind speed, wind direction, temperature and humidity. These factors are trivial when considering crop yield 
however, makes a difference as suggested by the models ahead. 

Since the sensors of the parameters mentioned above are respect to one region in Central India, so we consid-
er the crop that this region has lavishly produced, soybean. Soybean is one of the important crops of the world 
[3]. In India the production of soybean is currently restricted to mainly Madhya Pradesh, Uttar Pradesh, Maha-
rashtra and Gujarat. Himachal Pradesh, Punjab and Delhi are other states with some marginal produce. Accord-
ing to 2010 estimates of soybean production India produces 4.4% of the total production; central India is the 
largest contributor of soybean yield. This brings us to concentrate more over this region for our fitting models.  

Soybean is a crop that grows in warm and moist climate. An optimum yield requires a temperature ranging 
between 26.5˚C to 30˚C. For rapid germination and vigorous seedling growth soil temperatures of 15.5˚C or 
above are most suitable. A lower temperature delays flowering. Although, moisture enhances the yield of the 
crop but excess of moisture can make it prone to foliar diseases like frogeye leafs spot and septoria brown spot. 
Therefore, an optimum amount of humidity is required for the crop.  

Wind direction and velocity also have a significant influence on crop growth [4]. While it has a few benefits, 
gusty winds blowing in one direction can harm the crop. Beneficial impacts include increasing the supply of 
carbon dioxide by increasing turbulence in the atmosphere. It also alters the balance of hormones. Strong winds 
in a region may uproot the crop or be an inevitable carrier of dispersive seeds that may hamper the yield. Table 
1 elucidates the conditions prevalent in Central India, state of Madhya Pradesh that monitor the soybean growth.  

As far as the prediction of the yield on a larger perspective is considered, the simulations carried out by su-
percomputers are based on curve fitting methods. Curve fitting is the process of constructing a curve that has the 
best fit to a series of data points, possibly subject to constraints. Curve fitting involves interpolation [5], where 
an exact fit to the data is required in which a “smooth” function is constructed that approximately fits the data. A 
related topic is regression analysis, which focuses more on questions of statistical inference which includes the 
uncertainty present due to the random errors in the observed data. Fitted curves can be used as approximate data 
visualization for a model to which it is applied and to summarize the relationships among two or more variables.  
 
Table 1. Varying environmental parameters dependent for yield of soybean in Central India. 

Month Temperature (X) Humidity (Y) Wind speed (Z) Wind direction (W) 

January 142.188 14.992 50.708 4.510 

February 159.590 19.230 34.500 4.610 

March 191.820 25.080 13.190 4.486 

April 202.441 30.287 17.602 5.180 

May 252.712 33.287 17.541 5.503 

June 255.880 32.440 56.000 9.268 

July 238.640 28.380 64.650 6.770 

August 245.000 24.100 81.910 4.708 

September 203.300 25.210 71.035 4.000 

October 143.916 25.330 32.250 5.267 

November 148.460 20.600 31.234 3.065 

December 159.660 17.970 40.830 2.972 
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Extrapolation refers to the use of a fitted curve beyond the range of the observed data, and is subject to a greater 
degree of uncertainty since it may reflect the method used to construct the curve as much as it reflects the observed 
data. In order to fit a polynomial up to three degree which exactly fits four constraints, each constraint can be a 
point, angle, or curvature (which is the reciprocal of the radius of an osculating circle). Angle and curvature 
constraints are most often added to the ends of a curve, and in such cases are called end conditions. Identical end 
conditions are frequently used to ensure a smooth transition between polynomial curves contained within a single 
spline. If we have more than n + 1 constraints (n is the degree of the polynomial), we can still run the polynomial 
curve through those constraints. An exact fit to all constraints is not certain (but it might happen, for example, in 
the case of a first degree polynomial exactly fitting three collinear points). In general, however, some method is 
then needed to evaluate each approximation. The least squares method is one way to compare the deviations. 

Low-order polynomials tend to be smooth and high order polynomial curves tend to be lumpy. To define this 
more precisely, the maximum number of inflection points possible in a polynomial curve is 2n − , where n is the 
order of the polynomial equation. An inflection point is a location on the curve where it switches from a positive 
radius to negative. It is only possible that high order polynomials will be lumpy; they could also be smooth, but 
there is no guarantee of this, unlike with low order polynomial curves. A fifteenth degree polynomial could have, 
at most, thirteen inflection points, but could also have twelve, eleven, or any number down to zero. 

2. Fitting a Polynomial Function 
When a given set of data does not appear to satisfy a linear equation, we can try a suitable polynomial as a re-
gression curve to fit data. The least squares technique can be readily used to fit the data to a polynomial. 

Consider a polynomial of degree 1m −  

( )2 1
1 2 3 .m

my a a x a x a x f x−= + + + + =                             (1) 

If the data contains n sets of x and y values, then the sum of squares of the errors is given by 

( ) 2

1
.

n

i i
i

Q y f x
=

 = − ∑                                    (2) 

Since ( )f x  is a polynomial and contains coefficients a1, a2, a3 etc. we have to estimate all m coefficients. As 
before, we have the following m equations that can be solved for these coefficients. 

1

2

0,

0,

0.m

m

Q
a
Q
a

Q
a

∂
=

∂
∂

=
∂

∂
=

∂





 

Consider a general term, 

( ) ( )

( )
1

1

2 0,

.

n
i

i i
ij j

i j
i

j

f xQ y f x
a a

f x
x

a

=

−

∂∂
 = − − = ∂ ∂

∂
=

∂

∑
 

Thus we have 

( )

( )

1

1

1 1

0
    1, 2, , .

0

n
j

i i i
i

j j
i i i i

y f x x
j m

y x x f x

−

=

− −

 − = 
=

 − = 

∑

∑
  
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Substituting for ( )if x  

( )1 2 1 1
1 2 3

1 1
.

n n
j i m j

i i m i i i
i i

x a a x a x a x y x− − −

= =

+ + + + =∑ ∑  

These are m equations ( )1,2 ,j m=   and each summation is for 1i =  to n. 
2 1

1 2 3

2 3
1 2 3

1 1 2 2 1
1 2 3

,

,

.

m
i i m i i

m
i i i m i i i

m m m m m
i i i m i i i

a n a x a x a x y

a x a x a x a x y x

a x a x a x a x y x

−

− − − −

+ + + + =

+ + + =

+ + + =

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑









 

The set of m equations can be represented in a matrix notation as follows: 
CA B=  

where  
2 1

1
2 3

2

3 2

11 2 2

,   ,   .

m
ii i i

m
i ii i i i

i

mm m m
m i ii i i

a yn x x x
a y xx x x x

C A a B y x

a y xx x x

−

−− −

    
    
    
    = = =
    
    
        

∑∑ ∑ ∑
∑∑ ∑ ∑ ∑
∑

∑∑ ∑ ∑





    

 
    

 

 

The element of matrix C is 

( ) 2

1
, ,  1, 2, , ,  and 1,2, ,

n
j k

i
i

C j k x j m k m+ −

=

= = =∑    

( ) 1

1
,   1, 2, , .

n
j

i i
i

B j y x j m−

=

= =∑   

The first model which we fit the yearly soybean yield is the linear model described by 

0 1 2 3 4L a a x a y a z a w= + + + +                                (3) 

where a0 being a constant term, w is the wind direction in degree, x being temperature parameter in degree Celsius, 
“y” the percentage humidity, “z” is the speed of wind in km/hr. 

The error in the generalisation 

( )0 1 2 3 4 .L a a x a y a z a w − + + + +                               (4) 

And squaring the error term for Minimum Squared Error 

( ) 2
0 1 2 3 4 .E L a a x a y a z a w  = − + + + +   

                          (5) 

Differentiating with respect to various factors, similar to equation for the weighted coefficients for the para-
meters that determine the yield, given by 

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

24 284 9892.52 1233.43 46602.534 15964.916 ,

899.32 9892.52 404388.23 50420.375 1905026.85 652616.73 ,

112.13 1233.43 50420.37 6286.56 237524.64 81370.27 ,

4236.594 4660

L a a a a a

L a a a a a

L a a a a a

L

= + + + +

= + + + +

= + + + +

=

∑
∑
∑

0 1 2 3 4

0 1 2 3 4

2.53 1905026.85 237524.64 8974364.36 3074369.168 ,

1451.356 15964.916 725184.539 81370.274 3074403.016 1053217.119 .

a a a a a

L a a a a a

+ + + +

= + + + +
∑
∑

 

The yield that is L∑  as per statistics available from the first estimate of soybean crop from Soybean Pro-
cessor Association of India [6] (SoPA 2012) is 1150 kg/hectare. 

Solving the equations to get the values of the weighted coefficients 
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0

1

2

3

4

104.545,
2.145,

0.000001139,
8.368,

0.0000013472.

a
a
a
a
a

=

=
= −
= −

=

 

Generalizing the model the yield can be predicted by 
104.545 0.0000013472 2.145 0.000001139 8.368L w x y z= + + − −  

where the w, x, y, z are the parameters discussed above. 
The second model which we fit the yearly soybean yield is the linear model described by 

2 2 2 2
0 1 2 3 4L a a x a y a z a w= + + + +                              (6) 

where a0 being a constant term, w is the wind direction in degrees, x being temperature parameter in degree Celsius, 
“y” the percentage humidity, “z” is the speed of wind in km/hr. 

The error in the generalisation 

( )2 2 2 2
0 1 2 3 4 .L a a x a y a z a w − + + + +                              (7) 

And squaring the error term for Minimum Squared Error 

( ) 22 2 2 2
0 1 2 3 4 .E L a a x a y a z a w  = − + + + +   

                         (8) 

Differentiating with respect to various factors, similar to equation for the weighted coefficients for the para-
meters that determine the yield, given by 

0 1 2 3 4

0 1 2 3 4

0 1 2

24 284 7751.249 25624.804 317.6214 479550.034 ,

15502.498 170527.478 120163722.1 397248472.8 4923925.118 7434223443 ,

51249.608 563745.688 397248472.8 1313261160 16277972.2

L a a a a a

L a a a a a

L a a a

= + + + +

= + + + +

= + + +

∑
∑
∑ 3 4

0 1 2 3 4

0 1 2 3 4

4 24576751260 ,

635.2428 6987.6708 4923965.424 16277972.24 201766.7074 304630706.4 ,

479550.034 5275050.374 3717111721 12288375630 152315353.2 22996823510 .

a a

L a a a a a

L a a a a a

+

= + + + +

= + + + +
∑
∑

 

The yield that is L∑  as per statistics available from the first estimate of soybean crop from Soybean Pro-
cessor Association of India (SoPA 2012) is 1150 kg/hectare. 

Solving the equations to get the values of the weighted coefficients 

0

1

2

3

4

30.304,
2.247,
0.06088,

0.242,
1.545.

a
a
a
a
a

= −

=
=
= −

= −

 

Generalizing the model the yield can be predicted by 
2 2 2 2

430.304 2.247 0.06088 0.242 1.545L x y z a w= − + + − −  

where the w, x, y, z are the parameters discussed above. 
The third model which we fit the yearly soybean yield is the linear model described by 

3 2 4
0 1 2 3 4L a a x a y a z a w= + + + +                               (9) 

where a0 being a constant term, w is the wind direction in degrees, x being temperature parameter in degree Celsius, 
“y” the percentage humidity, “z” is the speed of wind in km/hr. 

The error in the generalisation 
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( )3 2 4
0 1 2 3 4 .L a a x a y a z a w − + + + +                             (10) 

And squaring the error term for Minimum Squared Error 

( ) 23 2 4
0 1 2 3 4 .E L a a x a y a z a w  = − + + + +   

                        (11) 

Differentiating with respect to various factors, similar to equation for the weighted coefficients for the para-
meters that determine the yield, given by 

0 1 2 3 4

0 1 2

3 4

0 1

24 284 128601055.4 600745.167 309524.226 46697.354 ,

111691004.5 12860105.41 68339793020000 319241581600
164484050800 24815407980 ,

54613.197 600745.167 319241565800 14913006

L a a a a a

L a a a
a a

L a a

= + + + +

= + +

+ +

= + +

∑
∑

∑ 2

3 4

0 1 2

3 4

0 1 2

3 4

43
768368524.2 115922354.2 ,

28138.566 309522.466 164484050800 768368524.2
3958889448 59727117.16 ,

4245.214 46697.354 24815407980 115922354.2
59727117.16 9010920.94 .

a
a a

L a a a
a a

L a a a
a a

+ +

= + +

+ +

= + +

+ +

∑

∑

 

The yield that is L∑  as per statistics available from the first estimate of soybean crop from Soybean Pro-
cessor Association of India (SoPA 2012) is 1150 kg/hectare. 

Solving the equations to get the values of the weighted coefficients 

0

1

2

3

4

0.00004890265298,
0.0006236823179,

0.21479748791427158,
0.2395042332638745,

5.32059174909421 8.

a
a
a
a
a e

= −

=
= −
=

= − −

 

Generalizing the model the yield can be predicted by 
2 2 2 2

430.304 2.247 0.06088 0.242 1.545L x y z a w= − + + − −  

where the w, x, y, z are the parameters discussed above. 

3. Chaos 
Chaos is associated with complex and unpredictable behavior of phenomena over time [7]. Such behavior can 
arise in deterministic dynamical systems. These processes are intriguing in that the realizations corresponding to 
different, although extremely close, initial conditions typically diverge. The practical implication of this phe-
nomenon is that, despite the underlying determinism, we cannot predict, with any reasonable precision, the values 
of the process for large time values; even the slightest error in specifying the initial condition eventually ruins our 
attempt. The chaos in terms of correlation coefficient within various environmental factors (say n) is given by 

( )112 23 34 .nC r r r=   

4. Conclusion 
Table 2 describes the possible correlation permutation and Table 3 elucidates the variability of the yield 
amongst the different models under scrutiny. The results suggest, about the dependence of the yield on the envi-
ronmental factors more under the variable weighted powers rather than being in linearly or quadratic fashion. 
Figure 1 shows the proper harvesting time of the season for maximising the yield of soybean. The data are in-
deed direct acceptance of the model variable power model as the data match with the conventional values of  
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Figure 1. Statistical yield suggested by the third model for the yield of soybean in Central India. 

 
Table 2. Correlation permutations amongst various environmental factors. 

 Wind direction  
& temperature 

Wind direction  
& humidity 

Wind direction  
& wind speed 

Temperature  
& humidity 

Temperature  
& wind speed 

Humidity  
& wind speed 

Linear model 0.7919 0.2105 0.7554 0.6390 −0.2465 0.0168 

Quadratic model 0.7930 0.2086 0.7420 −0.2465 0.6390 0.0168 

Variable power model 0.7831 0.4155 0.5424 −0.1147 0.6038 0.1638 

 
Table 3. Correct prediction percentage amongst the three models 
under consideration. 

Chaos 

Linear model 0.2622 

Quadratic model 0.2634 

Variable power model 0.3554 

 
the 2012 estimate, thereby proving the legitimacy of the accuracy of the computational calculation of yield using 
hidden environmental parameters. 
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Abstract 
SPH has a reasonable mathematical background. Although VBM and MPS are similar to SPH, their 
mathematical backgrounds seem fragile. VBM has some problems in treating the viscous diffusion 
of vortices but is known as a practical method for calculating viscous flows. The mathematical 
background of MPS is also not sufficient. Not with standing, the numerical results seem reasonable 
in many cases. The problem common in both VBM and MPS is that the space derivatives necessary 
for calculating viscous diffusion are not estimated reasonably, although the treatment of advection 
is mathematically correct. This paper discusses a method to estimate the above mentioned prob-
lem of how to treat the space derivatives. The numerical results show the comparison among FDM 
(Finite Difference Method), SPH and MPS in detail. In some cases, there are big differences among 
them. An extension of SPH is also given. 

 
Keywords 
SPH, MPS, VBM, Concentration of Mass or Vorticity, Estimation of Space Derivatives 

 
 

1. Introduction 
The author has once shown how to obtain the space derivative in an irregular mesh using the moving least 
square method [1]. A similar problem is discussed from a different viewpoint in SPH. Gingold & Monaghan [2] 
and Lucy [3] have developed Smooth Particle Hydrodynamics method (SPH). In SPH, the continuous mass dis-
tribution is approximated by the finite number of particles. Namely, the continuous quantities are represented by 
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the finite number of the discrete quantities. At the same time, the space derivatives of the distributed quantities 
are expressed algebraically by the discrete quantities. Then, they transform the continuous system into a discrete 
system convenient for the numerical solution of the initial and boundary value problem. 

Vortex Blob Method (VBM) is one of the practical numerical tools for high Reynolds number flows [4]. The 
abduction is approximated reasonably. However, the diffusion of vortices can’t be approximated precisely. We 
have shown that this problem can be solved, if we apply the ideas developed by SPH. 

Moving Particle Semi-implicit method (MPS) uses a similar discretization of the initial and boundary value 
problem as SPH and VBM. However, the mathematical background is not sufficient. Not with standing, the nu-
merical results seem reasonable in many cases [5]. This suggests us that we may find the mathematical back-
ground [1] [6]. We have shown an interesting relationship between SPH and MPS as far as the gradient operator 
is concerned. 

The numerical results show the comparison among FDM, SPH and MPS in detail. In some cases, there are big 
differences among them. 

A classification of numerical solutions is shown in Figure 1. The weak solutions: FEM, FVM, IRM and 
GIRM are Finite Element Method, Finite Volume Method, Integral Representation Method and Generalized 
Integral Representation Method, respectively. The strong solutions: FDM, SPH, MPS, LBM and ColM are Fi-
nite Difference Method, Smooth Particle Hydrodynamics, Moving Particle Semi-Implicit Method, Voltex Blob 
Method, Lattice Boltzmann Method and Collocation Method, respectively. The general characteristics of the 
various numerical solutions are shown in Table 1. Since SPH, VBM and MPS belong to the strong solutions and 
are mesh-less methods, the low computational cost becomes very important in some cases. 

2. Discretization Used in SPH and the Extension 
Let 1 2 3

1 2 3x x x x x y zα
α= = + + = + +x e e e e i j k  be a position vector, where the suffix in Greek letter is used to 

refer to the component of the coordinates, and the summation convention is used for the Greek suffixes. We de-
fine a function ( )η x  as an integral of ( ) ( ) ( )w ξ ρ′ ′ ′−x x x x  with respect to a volume V, where ( )w x , 
( )ξ x  and ( )ρ x  are a weight function, an auxiliary function and the density of a fluid, respectively: 

( ) ( ) ( ) ( )d
V

w Vη ξ ρ′ ′ ′ ′= −∫x x x x x .                            (1) 

The function ( )η x  and ( )ξ x  can be scalars, vectors and tensors. If we introduce an discretization of the vo-
lume V and the density ρ  as 

, 0,1, , 1,j
j

V V j N= = −∑                                  (2) 

 

 
Figure 1. Classification of numerical solutions. 

 
Table 1. General characteristics of weak and strong solutions (◎: 
very good, ○: good, △: not good). 

 Week method Strong method 

Stability ○ × 

Precision ○ △ 

Computational cost (memory, time) × ◎ 
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( )d , 0,1, , 1,jV M j Nρ = = −x                                 (3) 

where the suffix in Roman letter is used to discriminate the point, and jM  is the mass of the volume element 
d jV . We have an approximation of Equation (1): 

( ) ( ) ( )j j j
j

w Mη ξ= −∑x x x x .                               (4) 

Furthermore, if we assume for the weight w 

( )d 1
V

w V =∫ x                                      (5a) 

and 

0 for .w σ= >x                                     (5b) 

If σ  tends to 0, ( )w x  tends to ( )δ x , where ( )δ x  is Dirac’s delta function, namely: 

( ) ( ) , when 0.w δ σ→ →x x                                 (6) 

Using Equation (6), we have a following approximation: 

( ) ( ) ( ) ( ) ( ) ( )d
V

w Vη ξ ρ ξ ρ′ ′ ′ ′= − =∫x x x x r x x .                       (7) 

From Equations (4) and (7), we obtain 

( ) ( ) ( ) ( )j j j
j

w Mξ ρ ξ= −∑x x x x x .                            (8) 

If we assume ( ) 1ξ =x , then, we have from Equation (8) 

( ) ( ) ( ) ( )d j jV
j

w V w Mρ ρ′ ′ ′= − = −∑∫x x x x x x .                       (9) 

Substituting i=x x , we obtain 

( ) ( )i i j j
j

w Mρ = −∑x x x .                                (10) 

Hence, we have 

( ) ( ) ( ) ( ) ( )0 0 di i i i iw M w Vρ ρ ρ≈ = ≈x x x .                         (11) 

This means that Equation (9) is a plausible approximation. 
Substituting Equation (9) into Equation (8), we obtain 

( )
( ) ( )

( ) ( ) ( ) ( )1j j j
j

j j j
jj j

j

w M
w M

w M

ξ
ξ ξ

ρ

−
= = −

−

∑
∑

∑

x x x
x x x x

xx x
.                 (12) 

Setting x  to ix  in Equation (12), we have using Equation (10) 

( ) ( ) ( ) ( )1
i i j j j

ji

w Mξ ξ
ρ

= −∑x x x x
x

.                           (13) 

Operating xα∂ ∂  on both sides of Equation (8), we obtain 

( ) ( ) ( ) ( ) ( ) ( )j
j j

j

w
M

x x xα α α

ξ ρ
ρ ξ ξ

∂ −∂ ∂
+ =

∂ ∂ ∂∑
x xx x

x x x .                     (14) 
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If we assume 

( ) ( )j jw w− = −x x x x .                                 (15) 

We derive 

( ) ( ) ( )
d

d
j j j j

j
j j

w w x x
w

x x

α α

α α

∂ − − ∂ − −
′= = −

∂ ∂− −

x x x x x x
x x

x x x x
,                   (16) 

( ) ( ) ( )j j
j j j

j j j

w x x
M w M

x x

α α

α α

ρ ∂ − −∂
′= = −

∂ ∂ −
∑ ∑

x xx
x x

x x
.                    (17) 

Substituting Equations (9), (16) and (17) into Equation (14), we obtain 

( )
( ) ( ) ( ) ( )( )1 j

j j j
j j

x x
w M

x

α α

α

ξ
ξ ξ

ρ
−∂

′= − − −
∂ −

∑
x

x x x x
x x x

.                   (18) 

Setting x to xi in Equation (18), we have 

( )
( ) ( ) ( ) ( )( )1 i j

i j i j j
j ii i ji

x x
w M

x

α α

α

ξ
ξ ξ

ρ ≠

−∂ 
′= − − − ∂ − 

∑
x

x x x x
x x x

.                 (19) 

( ) ( ) i j
i j j

j i i ji

x x
w M

x

α α

α

ρ

≠

−∂ 
′= − ∂ − 

∑
x

x x
x x

,                           (20) 

where we assume ( )0 0w′ = . 
Now, we derive formulas for second derivatives. Firstly, from Equation (14), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2

2

.
j

j j
j

x x x x x x x x
w

M
x x

α β β α α β α β

α β

ξ ξ ρ ξ ρ ρ
ρ ξ

ξ

∂ ∂ ∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ −
=

∂ ∂∑

x x x x x x
x x

x x
x

                  (21) 

From Equations (16) and (17), we obtain 

( ) ( )

( ) ( )( ) ( ) ( )( )

2

2 3 ,

j j
j

j

j j j j
j j

jj j

w x x
w

x x x

x x x x x x x x
w w

β β

α β α

α α β β α α β βαβδ

 ∂ − −∂ ′ = −
∂ ∂ ∂ −  

 − − − − ′′ ′= − + − −
 −− − 

x x
x x

x x

x x x x
x xx x x x

     (22) 

( ) ( )

( ) ( )( ) ( ) ( )( )

22

2 3 ,

j
j

j

j j j j
j j j

j jj j

w
M

x x x x

x x x x x x x x
w w M

α β α β

α α β β α α β βαβ

ρ

δ

∂ −∂
=

∂ ∂ ∂ ∂

  − − − −  ′′ ′= − + − −
  −− −   

∑

∑

x xx

x x x x
x xx x x x

    (23) 

where αβδ  is Chronecker’s delta: 1αβδ =  and 0αβδ =  when α β=  and α β≠ , respectively. Substitut- 
ing Equations (9), (17), (22) and (23) into Equation (21), we derive 
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( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

22 2

2 3

1

j
j j

j

j j j j
j j j j

j jj j

i j j
i j i j j j

j j

w
M

x x x x x x x x x x

x x x x x x x x
w w M

x x x x
w M w

α β α β β α α β α β

α α β β α α β βαβ

β β α α

ξ ξ ρ ξ ρ ρ
ρ ξ ξ

δ ξ

ξ ξ
ρ

∂ −∂ ∂ ∂ ∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

  − − − −  ′′ ′= − + − −
  −− −   

− −
′ ′+ − − −

−

∑

∑

∑

x xx x x x x x
x x x

x x x x x
x xx x x x

x x x x x x
x x x x

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

2 3

2

1
| |

j
j j

i j j
i j i j j j j

j jj j

j j j j
j j j

j jj j

j j j j
j j

jj j

M

x x x x
w M w M

x x x x x x x x
w w M

x x x x x x x x
w w

α α β β

α α β β α α β βαβ

α α β β α α β βαβ

ξ ξ
ρ

δξ

δ

−

− −
′ ′+ − − −

− −

  − − − −  ′′ ′− − + − −
  −− −   

− − − −
′′ ′= − − + − −

−− −

∑

∑ ∑

∑

x

x x x x x x
x x x x x

x x x x x
x xx x x x

x x x x
x xx x x x

( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( )

3

1 .

j j
j

i j k i j k
k i j i j j k

j k j k

M

x x x x x x x x
w w M M

β β α α α α β β

ξ ξ

ξ ξ
ρ

  
   ⋅ −
  
   

 − − + − − ′ ′+ − − −
− ⋅ −

∑

∑∑

x x

x x x x x x
x x x x x

(24) 

Setting x  to ix  in Equations (22), (23) and (24), we have 

( ) ( ) ( )( ) ( ) ( )( )2

2 3

j i j i j i j i j
i j i j

i ji j i ji

w x x x x x x x x
w w

x x

α α β β α α β βαβ

α β

δ  ∂ − − − − −   ′′ ′= − + − −
  ∂ ∂ −− −   

x x
x x x x

x xx x x x
,  (25) 

( ) ( ) ( )( ) ( ) ( )( )2

2 3

i j i j i j i j
i j j j

j i ji i j i j

x x x x x x x x
w w M

x x

α α β β α α β βαβ

α β

ρ δ  − − − − ∂   ′′ ′= − + − −    ∂ ∂ −  − −     
∑

x
x x x x

x xx x x x
, (26) 

( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( )

2

2 3

1

i

i

i j i j i j i j
i j i j j j

j i i ji j i j

i j i k i j i k
i k i j i j j k

j i k ii i j i k

x x

x x x x x x x x
w w M

x x x x x x x x
w w M M

α β

α α β β α α β βαβ

β β α α α α β β

ξ
ρ

δ ξ ξ

ξ ξ
ρ

≠

≠ ≠

 ∂
 
∂ ∂  

  − − − −  ′′ ′= − − + − − −
  −− −   

 − − + − − ′ ′+ − − −
− ⋅ −

∑

∑

x
x

x x x x x x
x xx x x x

x x x x x x
x x x x x

,∑

(27) 
where we assume ( )0w′′  is finite. From Equation (19), we obtain for scalar φ  and vector a 

[ ] ( ) ( ) ( ) ( )( )1 i j
i j i j ji

j ii i j

w Mφ φ φ
ρ ≠

−
′∇ = − − −

−
∑

x x
x x x x

x x x
,                  (28) 

[ ] ( ) ( ) ( ) ( ) ( )( )1 i j i j
i j ji

j ii i j

w M
ρ ≠

− ⋅ −
′∇ ⋅ = − −

−
∑

x x a x a x
a x x

x x x
.                 (29) 

From Equation (27), we obtain for scalar φ  
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( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( )

( )

2

2 3

1

ii

i j i j i j i j
i j i j j j

j i i ji j i j

i j i k i j i k
i k i j i j j k

j i k ii i j i k

i j

x x x x x x x xdw w M

x x x x x x x x
w w M M

w

α α α α α α α α

α α α α α α α α

φ ρ

φ φ

φ φ
ρ

≠

≠ ≠

 ∇ 

  − − − −  ′′ ′= − − + − − −
  −− −   

 − − + − − ′ ′+ − − −
− ⋅ −

′′= − − +

∑

∑∑

x x

x x x x x x
x xx x x x

x x x x x x
x x x x x

x x ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )
( ) ( )( )

1

12 ,

i j i j j
j i i j

i j i k
i k i j i j j k

j i k ii i j i k

dw M

w w M M

φ φ

φ φ
ρ

≠

≠ ≠

 −′ − −
−  

− ⋅ −
′ ′+ − − −

− ⋅ −

∑

∑∑

x x x x
x x

x x x x
x x x x x x

x x x x x

 

(30) 
where d is the number of the dimension. 

3. Application to Vortex Blob Method (VBM) 
The basic equations for an incompressible viscous flow are given by Navier-Stokes equation [7]: 

2p
t

ρ ρ µ∂
+ ⋅∇ = −∇ + ∇

∂
u u u u ,                              (31) 

or 

2d
d

p
t

ρ µ= −∇ + ∇
u u ,                                  (32) 

where µ  is the coefficient of viscosity, and the continuity equation: 
0∇⋅ =u .                                       (33) 

The pressure p satisfy 

( )2 p ρ∇ = − ∇ ⋅∇u u .                                  (34) 

The viscous flow is determined by Equations (31) or (32), (33) and (34). 
If we introduce vorticity ω, the basic equations can be rewritten as 

, 0= ∇× ∇⋅ =u uω ,                                  (35) 

t
ρ ρ ρ µ∂

+ ⋅∇ = ⋅∇ + ∆
∂

u uω ω ω ω .                            (36) 

Equation (36) can be written as 

d
dt

ν= ⋅∇ + ∆uω ω ω ,                                  (37) 

where ν µ ρ=  is the kinematic viscosity. 
If ω is determined, the velocity u is obtained by an integral representation [7]: 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )

, , , , , , , d

, , , d , , ,
S

V

t t t t t S

t t V t

ε

∞

 = − ⋅ − × × 
− × +

∫∫
∫∫∫

u x G x u n G x n u

G x u x

ξ ξ ξ

ξ

ξ ξ ξ ξ

ξ ω ξ ξ
              (38) 

where 1,1 2, 0ε =  when V∈x , S∈x , V S∉ x , respectively, and 

( ) ( ), ,G δ∆ =x x xξ ξ ,                                (39a) 
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( )
( )
( ) ( )
( ) 1

1 2 in 1D

, 1 2π ln in 2D

1 4π in 3D

G
−

 −
= −

− −

x

x x

x

ξ

ξ ξ

ξ

                          (39b) 

( ) ( ) ( )
( )( )
( )( )
( )( )

2

3

1 2 in 1D

, , , 1 2π in 2D

1 4π in 3D
i iG G

 − −
∇ = = = − −


− −

x

x x

x G x x e x x

x x

ξ ξ

ξ ξ ξ ξ ξ

ξ ξ

             (39c) 

The second term on the right hand side of Equation (38) is usually called Bio-Savart law. 
Vortex Blob Method (VBM) uses Equations (37) and (38) and discretizes the vortex field as an assembly of 

concentrated vortices. The position of the concentrated vortices are determined by 

( ) ( )
d ,

,
d

t
t

t
=

x a
u a ,                                  (40) 

where a is the Lagrangian coordinates. It becomes very important how to obtain ⋅∇uω  and ∆ω . 
In this problem, we use the vorticity ω corresponds to the density ρ in Section 2. Then, we consider instead of 

Equation (1) 

( ) ( ) ( ) ( )d
V

w Vη ξ ω′ ′ ′ ′= −∫x x x x x .                            (41) 

Equation (3) is replaced by 

( )d , 0,1, , 1jV j Nω ′ ′ = Ω = −x  .                             (42) 

Then, we have instead of Equations (8) and (9) 

( ) ( ) ( ) ( )j j j
j

wξ ω ξ= − Ω∑x x x x x .                            (43) 

( ) ( ) ( ) ( )d j jV
j

w V wω ω′ ′ ′= − = − Ω∑∫x x x x x x .                      (44) 

In all equations in Section 2, if we replace ρ and M with ω and Ω, respectively, we obtain the differential 
formulas in Section 3. 

4. Mathematical Background of Moving Particle Semi-Implicit Method (MPS) 
From Equations (19), (28) and (30), we have 

( )
( ) ( ) ( ) ( )( ), 1 , ,i j

i j i j j
j ii i ji

x xu t
w u t u t M

x

β βα
α α

β ρ ≠

  −∂
′= − − − 

∂ −  
∑

x
x x x x

x x x
,             (45) 

[ ] ( ) ( ) ( )( ) ( )1 i j
i j i j ji

j ii i j

p p p w M
ρ ≠

−
′∇ = − − −

−
∑

x x
x x x x

x x x
,                   (46) 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2 1, , ,

12 .

i i j i j i j ji j i i j

i j i k
i k i j i j j k

j i k ii i ki j

du t w w u t u t M

w w M M

α α αρ

φ φ
ρ

≠

≠ ≠

 −  ′′ ′ ∇ = − − + − −  −  

− −
′ ′+ − − ⋅ −

−−

∑

∑∑

x x x x x x x x
x x

x x x x
x x x x x x

x x xx x

       (47) 

If the weight ( )w r  satisfies 

( ) ( ) ( ) ( ) ( ) 1
1 1 0

d 1~ and 2 1 2 1 π d 1
d

d
i i

w r
w r d w r r r

r r
δ δ

∞ − − + − − =  ∫ ,               (48) 
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then, we obtain 

( ) ( )
~

c d
w r

r
,                                     (49) 

where ( )c d  is a constant. Then, we have 

( ) ( ) ( ) ( ) ( ) ( )
2

2 2 3 2

d d 21 2~ ~ and .
d d

w r c d w r c d
w r w r

r rr r r r
− − = =                   (50) 

Substituting Equations (49) and (50) into Equations (45), (46) and (47), we obtain 

( )
( ) ( ) ( ) ( )( )2

, 1 , ,i j
i j i j j

jii i j

x xu t
w u t u t M

x

β βα
α α

β ρ
  −∂

≈ − − 
∂  − 

∑
x

x x x x
x x x

,            (51) 

[ ] ( ) ( ) ( )( ) ( ) 2

1 i j
i j i j ji

ji i j

p p p w M
ρ

−
∇ ≈ − −

−
∑

x x
x x x x

x x x
,                  (52) 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )
( ) ( )( )

2
2

2 2

3, , ,

12 .

i i j i j ji j i i j

i j i k
i k i j i j j k

j i k ii i j i k

du t w u t u t M

w w u u M M

α α α

α α

ρ

ρ

≠

≠ ≠

− ∇ ≈ − − 
−

− ⋅ −
+ − − −

− ⋅ −

∑

∑∑

x x x x x x
x x

x x x x
x x x x x x

x x x x x

       (53) 

Now, we consider a weight ( )w r  with a small parameter 0 erε< =  and constant α : 

( )
( )

( )

1 0
1

0 ,

e
e

e

e

r r r
r rw r

r r

α
ε ε

  
− ≤ ≤  + +=   

 ≤

                         (54) 

where r = x . The weight ( )w r  has an asymptotic form: 

( ) 1 1 1~ 1 when .
1

e e
e e

e e

r rw r r r r
r r r r r

α α α ε
ε ε

    = − − = − < ≤    + +     
              (55) 

This asymptotic form is similar to ( )k r  defined by Equation (4) in Ref. [5]. If er  is big, ( )w r  satisfies Eq-
uation (49). In this case, Equation (52) has similar forms as given by Equation (2) in Ref. [5], if we assume 

1jM = , 0,1,j =  . 
The author has once discussed this problem from a different angle [1] and had the conclusion that the discrete 

differential operators used in MPS, especially, Laplace operator don’t have the strict background from the ma-
thematical viewpoint. Those operators should be considered to be a kind of experimental formulas that is de-
rived numerically. If we apply them to irregular grids, the results vary irregularly. We should say the operator 
estimate the derivatives statistically. Quite naturally, the results are not unique. It may give a good estimate in 
one time and a wrong result in the other time. Hence, if we need to verify the accuracy, we should obtain several 
numerical results of the same problem using the various discretizations of the region and take the statistical av-
erage. 

Although we do not deny this kind of approach, we wish to ensure the reliability. For the purpose, we need 
much discussion. Recently, a new paper [6] discusses the accuracy of Laplace operator in MPS in detail. Hope-
fully, we wish to prove mathematically, if possible, that, if we decrease the grid size zero, then, the numerical 
error approaches stably to zero. 

5. Numerical Verification of Discretized Differential Operators of SPH with  
Gaussian Kernel 

Numerical calculations were conducted to verify the validity of the discretized differential operators such as 
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Equations (28) and (30). For simplicity, one-dimensional (1D) cases were considered. The first and second de-
rivates of a scalar function ( )xφ : 

( ) ( )sin 2π in 0x x L x Lφ = ≤ ≤                               (56) 

were calculated using Equations (28) and (30), respectively. 
The region is divided into N intervals. First, we consider the uniform mesh. Let dxi and xi ( )0,1, , 1i N= −  

be the length of the interval and the midpoint of the interval i, respectively: 

( )
0

1 1

0.5d for 0
, d d and d d .

0.5 d d for 1, 2,i j j j j
i i i

x i
x V x M V x

x x x i
ρ ρ

− −

== = = = + + = 

      (57), (58) 

As the weight function ( )w r , we use Gaussian function: 

( )
2

2

1 exp
22π
rw r
γγ

 
= − 

 
.                               (59) 

The weight function ( )w r  satisfies 

( )
0

2 d 1w x x
∞

=∫ .                                   (60) 

The 1D version of Equations (28) and (30) are given by 

( ) ( ) ( ) ( )( )d 1
d

i j
i j i j j

j ii i i j

x x
w x x x x M

x x x
φ φ φ

ρ ≠

−  ′= − − −  − 
∑x

,                 (61) 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )( )

2

2

d
d

12 .

i i j i j j
j ii

i j i k
i k i j i j j k

j i k ii i j i k

x w x x x x M
x

x x x x
w x x w x x x x M M

x x x x x

φ ρ φ φ

φ φ
ρ

≠

≠ ≠

 
′′= − − − 

 

− −
′ ′+ − − −

− −

∑

∑∑
         (62) 

5.1. Uniform Density and Regular Mesh 
The density iρ  and the length of element d ix  are given by 

1 0,1, , 1,i i Nρ = = −                                  (63a) 

d 0,1, , 1,ix L N i N= = −                                (63b) 

where the computational region is defined as 0 x L< < . 

5.1.1. Verification of Gradient Operator 
From Equations (61), (63) and (45), we have 

( ) ( ) ( )( )d
d

i j
i j i j j

j ii i j

x x
w x x x x M

x x x
φ φ φ

≠

−  ′= − − −  − 
∑ .                     (64) 

We used parameters: 4L = , 80N =  and d 0.05xγ = = . The numerical results are shown in Figure 2. Al-
though there exist large errors at the boundaries as shown in Figure 2(a), the numerical results agree very well 
with the exact except the neighborhood of the boundaries. If we extend the region beyond the boundaries, the 
estimations within the original region are improved as shown in Figure 2(b). 

5.1.2. Verification of Laplace Operator 
From Equation (62), we have 
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Figure 2. A comparison between calculated and exact values 
of dφ/dx ((a) Not using extension of region; (b) Using exten-
sion of region). 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )
( ) ( )( )

2

2

d
d

12 .

i i j i j j
j ii

i j i k
i j i k i j j k

j i k ii i j i k

x w x x x x M
x

x x x x
w x x w x x x x M M

x x x x x

φ
ρ φ φ

φ φ
ρ

≠

≠ ≠

   ′′= − − −     

− ⋅ −
′ ′+ − − −

− ⋅ −

∑

∑∑

x

         (65) 

The numerical results are shown in Figure 3. If we extend the region beyond the boundaries, the estimations 
within the original region are improved. 

5.2. Non-Uniform Density and Regular Mesh 
The density iρ  and the length of element d ix  are given by 

( )21 0,1, , 1,i ix L i Nρ = + = −                               (66a) 

d , 0,1, , 1,ix L N i N= = −                                (66b) 

respectively. The other parameters are same as in Section 5.1.1. 
The numerical results are shown in Figure 4. The numerical result agrees well with the exact result. 

5.3. Uniform Density and Non-Uniform Mesh 
The density iρ  and the length of element d ix  are given by 

1 0,1, , 1,i i Nρ = = −                                  (67a) 

( ) ( )
11 1

0
d 1.05 0,1, , 1, 1.05 ,

i Ni i
i

i

L Lx i N L
N N

α α
= −

− −

=

= = − =∑                  (67b) 

respectively. The other parameters are same as in Section 5.1.1. 
The numerical results are shown in Figure 5. The numerical result agrees well with the exact result. 

5.4. Non-Uniform Density and Non-Uniform Mesh 
The density iρ  and the length of element d ix  are given by 

( )21 0,1, , 1,i ix L i Nρ = + = −                             (68a) 



H. Isshiki 
 

 
424 

 
Figure 3. A comparison between calculated and exact values 
of d2φ/dx2 ((a) Not using extension of region; (b) Using ex-
tension of region). 

 

 
Figure 4. A comparison between calculated and exact values 
((a) Gradient operator dφ/dx; (b) Laplace operator d2φ/dx2). 

 

 
Figure 5. A comparison between calculated and exact values 
((a) Gradient operator dφ/dx; (b) Laplace operator d2φ/dx2). 
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( ) ( )
11 1

0
d 1.05 0,1, , 1, 1.05

i Ni i
i

i

L Lx i N L
N N

α α
= −

− −

=

= = − =∑                   (68b) 

respectively. The other parameter are same as in Section 5.1.1. 
The numerical results are shown in Figure 6. The numerical result agrees well with the exact result. 

6. Comparison between SPH and MPS 
6.1. 1D Formulas for Discrete Gradient and Laplacian Operator 
For convenience, we summarize the 1D discrete differential operators used in SHP and MPS as follows. From 
Equations (61) and (62), we have for SHP 

( ) ( ) ( ) ( )( )d 1
d

i j
i j i j j

j ii i i j

x x
w x x x x M

x x x
φ φ φ

ρ ≠

−  ′= − − −  − 
∑x

,                 (69a) 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )( )

2

12 ,

i i j i j ji j i

i j i k
i k i j i j j k

j i k ii i j i k

x w x x x x M

x x x x
w x x w x x x x M M

x x x x x

φ ρ φ φ

φ φ
ρ

≠

≠ ≠

  ′′∇ = − − − 

− −
′ ′+ − − −

− −

∑

∑∑
         (69b) 

( )di i iM x xρ= .                                   (69c) 
From Refs. [5] and [8], we have for MPS 

( ) ( )2

d 1
d

j i
j i j i

j ii i j i

x x w x x
x n x x

φ φφ
≠

−  = − − 
  −

∑ ,                       (70a) 

( ) ( )
2

2

d 2
d j i j i

j ii ii

w x x
nx

φ φ φ
λ ≠

 
= − − 

 
∑ ,                          (70b) 

where 

( ),i j i
j i

n w x x
≠

= −∑                                  (71a) 

( )
( )

2

.
j i j i

j i
i

j i
j i

x x w x x

w x x
λ ≠

≠

− −
=

−

∑

∑
                             (71b) 

 

 
Figure 6. A comparison between calculated and exact values 
((a) Gradient operator dφ/dx; (b) Laplace operator d2φ/dx2). 
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6.2. Effects of Mesh and Weight on Estimation of Gradient and Laplacian of a Given  
Function 

We summarize the meshes and weights used in the following in Table 2 and Table 3, respectively. 
The parameters used in Sections 6.2.1-6.2.5 are given below. 

4L = , 40N = , 1ρ = , d for SPH0i ixγ = , 

8d for SPH1 and SPH2, and 2d for MPSi i ih x x= , 

_ 8 for SPH0, SPH1 and SPH2, and 2 for MPSend corN = . 

In Sections 6.2.1-6.2.5, the computational results are shown in Figures 7-11. The results are summarized Ta-
ble 4 and Table 5 in Section 6.2.6. 

6.2.1. Regular Mesh  
As shown in Figure 7, there are no big errors in all methods SPH0, SPH1, SPH2 and MPS. The accuracy of 
SPH0 is very high. 
 

Table 2. Classification of mesh. 

Name d ix  

Regular d i

Lx
N

=  

Algebraic d
100i

L Lx i
N

α  = + 
 

, 
1

0

d
i N

i
i

x L
= −

=

=∑  

Geometric 1d 1.05i
i

Lx
N

α −= , 
1

0

d
i N

i
i

x L
= −

=

=∑  

Random ( )( )d 1 0.0625drandi

Lx i
N

α= + , 
1

0

d
i N

i
i

x L
= −

=

=∑  

Sinusoidal d 1 0.5sin 4πi

L ix
N N

α   = +  
  

, 
1

0

d
i N

i
i

x L
= −

=

=∑  

 
Table 3. Classification of weight. 

Name Weight 

SPH0 … Gauss ( )
2

2

1 exp
22π
x

w x
γγ

 
= −  

 
, x < ∞  

SPH1 … Lucy ( )
3

5 1 1 3 1 ,
4
0,

x x
x

w x

x

σ
σ σ σ

σ

   
 + − ≤  =    
 >

 

SPH2 … Opt.kernel ( )

2 3

3

| |1 6 6 , 0 0.5

4 2 1 , 0.5
3

0,

x x x h
h h

x
w x h x h

h h
h x

     − + ≤ <   
   


 

= − ≤ < 
 

 ≤



 

MPS ( ) 1, 0
0,
h x x h

w x
h x

 − ≤ <=  ≤
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Table 4. Summary on dφ/dx (○: good, △: not good, ×: bad). 

 Regular Algebraic Geometric Random Sinusoidal 

SPH0 ○ ○ ○ ○ △ 

SPH1 ○ △ △ ○ × 

SPH2 ○ △ △ ○ × 

MPS ○ ○ × ○ ○ 

 
Table 5. Summary on d2φ/dx2 (○: good, △: not good, ×: bad). 

 Regular Algebraic Geometric Random Sinusoidal 

SPH0 ○ ○ ○ △ △ 

SPH1 △ △ △ △ × 

SPH2 ○ △ △ △ × 

MPS ○ × × ○ × 

6.2.2. Algebraic Mesh  
As shown in Figure 8, a big error occurs in 2 2d dxφ  of MPS. 

6.2.3. Geometric Mesh  
As shown in Figure 9, a big error occurs in 2 2d dxφ  of MPS. 

6.2.4. Random Mesh  
As shown in Figure 10, the errors are rather small in all methods SPH0, SPH1, SPH2 and MPS not only for 
d dxφ  but also for 2 2d dxφ . The errors in MPS are surprisingly small. 

6.2.5. Sinusoidal Mesh  
As shown in Figure 11, the errors are rather big in all methods SPH0, SPH1, SPH2 and MPS not only for 
d dxφ  but also for 2 2d dxφ  except d dxφ  in MPS. The errors in SHP0 are smaller than those in the other 
methods. 

6.2.6. Summary of Results 
From the above mentioned numerical results, the following summaries are obtained. 

6.3. Application to Solution of Initial Value Problem 
6.3.1. 1D Fluid Motion without Pressure and Viscosity 
The motion of vast number of particles distributed in space under the action of the gravitational force may be 
treated as a fluid motion without pressure and viscosity [9] [10]: 

0u
t x
ρ ρ∂ ∂
+ =

∂ ∂
,                                     (72a) 

u uu
t x x

∂ ∂ ∂Π
+ = −

∂ ∂ ∂
,                                   (72b) 

2

2 4πG
x

ρ∂ Π
=

∂
,                                     (72c) 

where ρ , u and Π  is the density, velocity and gravitational potential. G is the gravitational constant. 
The solution of the problem defined above by Eulerian method is given as follows: 
1) At time t, assume ρ , u and Π are given. 
2) tρ∂ ∂  and u t∂ ∂  are obtained from Equations (72a) and (72b), and Π is obtained from Equation (72c). 
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 d dxφ  2 2d dxφ  

SPH0 

  

SPH1 

  

SPH2 

  

MPS 

  

Figure 7. Regular mesh. 
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 d dxφ  2 2d dxφ  

SPH0 

  

SPH1 

  

SPH2 

  

MPS 

  

Figure 8. Algebraic mesh. 
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 d dxφ  2 2d dxφ  

SPH0 
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SPH2 

  

MPS 

  

Figure 9. Geometric mesh. 
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 d dxφ  2 2d dxφ  

SPH0 
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Figure 10. Random mesh. 
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 d dxφ  2 2d dxφ  
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MPS 

  

Figure 11. Sinusoidal mesh. 
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3) ρ , and u at time dt t+  is calculated. 
4) Repeat this process. 
In the solution by Lagrangian method, first, the equations in Eulerian form are transformed into Laglangian 

form: 
Dx u
Dt

= ,                                       (73a) 

Du u uu
Dt t x x

∂ ∂ ∂Π
≡ + = −
∂ ∂ ∂

,                                 (73b) 

D uu
Dt t x x
ρ ρ ρ ρ∂ ∂ ∂
≡ + = −
∂ ∂ ∂

,                                (73c) 

2

2 4πG
x

ρ∂ Π
=

∂
.                                     (73d) 

The following procedures give the solution of the problem defined above by Lagrangian method: 
1) At time t, assume ρ , u and Π are given. 
2) Dx Dt , D Dtρ  and Du Dt  is obtained from Equations (73a), (73b) and (73c), and Π is obtained 

from Equation (73d). 
3) x , ρ  and u of the material point at time dt t+  is calculated. 
4) Repeat this process. 
If ix  is obtained, then, d ix  and iρ  is obtained as shown below: 

( ) ( ) ( )1 1 1 1
1 1 1d
2 2 2i i i i i i ix x x x x x x+ − + −= − + − = −                         (74a) 

and 

d
i

i
i

M
x

ρ = .                                       (74b) 

Hence, from the theoretical viewpoint, this problem can be solved without using the gradient operator. How-
ever, we use the gradient operator to obtain iρ  using the continuity equation. 

1) Trapezoidal Distribution of the Initial Density 
The initial conditions are given by 

( )0 0.5i ix x i L N= = + ,                                 (75a) 

( )

( )

101 0.35 0.025 when 0.25 0.35

1 0.025 when 0.35 0.65
101 0.65 0.025 when 0.65 0.75

0 0.025 otherwise,

i i

i
i

i i

x L L x L
L

L x L

x L L x L
L

ρ

 + − + ≤ <

+ ≤ <= 

 − − + ≤ <

 +

                  (75b) 

0iu = .                                        (75c) 

The boundary conditions are specified as 

0 1 1 2, ;N Nρ ρ ρ ρ− −= =                                   (76a) 

0 1 1 2, .N Nu u u u− −= =                                   (76b) 

The computational conditions are as follows: 
4L = , 41N = , 0.0ν = , d 0.00025t = , 30000dendt t= , 0.0015G = , 

d for SPH0i ixγ = , 2d for MPSi ih x= , _ 8 for SPH0 and 2 for MPSend corN = . 

The numerical results are shown in Figure 12. The FDM (Finite Difference Method) uses the central differ-  
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 ρ in x0 ρ in x 

FDM  

 

SPH0 

  

MPS 

  

Figure 12. Trapezoidal distribution of the initial density. 
 
ences for the first and second space derivatives, and the precision of FDM is considered high. The Eulerian solu-
tion is used for FDM, and the Lagrangian solution is used for SPH0 and MPS. The distribution pattern of MPS 
is slightly different from those of FDM and SPH0. 

2) Rectangular Distribution of the Initial Density with G = 0.001 
The initial conditions are given by 

( )0 0.5i ix x i L N= = + ,                                 (77a) 

0 0.5 when 0.25
1 0.5 when 0.25 0.75
0 0.5 when 0.75 ,

i

i i

i

x L
L x L
L x

ρ
+ <

= + ≤ ≤
 + ≤

                          (77b) 
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0iu = .                                        (77c) 
The boundary conditions are specified as 

0 1 1 2, ;N Nρ ρ ρ ρ− −= =                                   (78a) 

0 1 1 2, .N Nu u u u− −= =                                   (78b) 
The computational conditions are as follows: 

4L = , 41N = , 0.0ν = , d 0.00025t = , 30000dendt t= , 0.001G = , 
d for SPH0i ixγ = , 2d for MPSi ih x= , _ 8 for SPH0 and 2 for MPSend corN = . 

The numerical results are shown in Figure 13. The FDM uses the central differences for the first and second 
space derivatives, and the precision of FDM is considered high, if we neglect the spurious oscillation. The dis-
tribution pattern of MPS is slightly different from those of FDM and SPH0. 

 
 ρ in x0 ρ in x 

FDM  

 

SPH0 

  

MPS 

  

Figure 13. Rectangular distribution of the initial density with G = 0.001. 
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3) Rectangular Distribution of the Initial Density with G = 0.0015 
The initial conditions are given by 

( )0 0.5 ,i ix x i L N= = +                                (79a) 

0 0.025 when 0.35
1 0.025 when 0.35 0.75 ,
0 0.025 when 0.35

i

i i

i

x L
L x L
L x

ρ
+ <

= + ≤ <
 + ≤

                       (79b) 

0.iu =                                       (79c) 
The boundary condition are specified as 

0 1 1 2, ;N Nρ ρ ρ ρ− −= =                                 (80a) 

0 1 1 2, .N Nu u u u− −= =                                 (80b) 
Computational condition 

4L = , 41N = , 0.0ν = , d 0.00025t = , 30000dendt t= , 0.0015G = , 

d for SPH0i ixγ = , 2d for MPSi ih x= , _ 8 for SPH0 and 2 for MPSend corN = . 
The numerical results are shown in Figure 14. The FDM uses the central differences for the first and second 

space derivatives, and the precision of FDM is considered high, if we neglect the spurious oscillation. The dis-
tribution pattern of MPS is different from those of FDM and SPH0. 

6.3.2. 1D Fluid Motion without Pressure but with Viscosity 
In the present section, the viscosity is introduced: 

0,u
t x
ρ ρ∂ ∂
+ =

∂ ∂
                                    (81a) 

2

2 ,u u uu
t x x x

ν∂ ∂ ∂Π ∂
+ = − +

∂ ∂ ∂ ∂
                               (81b) 

2

2 4π ,G
x

ρ∂ Π
=

∂
                                    (81c) 

where ν  is the kinematic viscosity. 
Since the discrete Laplacian operator of SPH0 generates a big error at the discontinuity, the initial density dis-

tribution was smoothened using the five point running average, and, in the second example below, an small ar-
tificial numerical viscosity μ = 0.0000005 in case of N = 41 was added at every time step: 

( )1 12
1 2 ,

di i i i i
ix

ρ ρ µ ρ ρ ρ+ −→ + − +                            (82a) 

( )1 12
1 2 .

di i i i i
i

u u u u u
x

µ + −→ + − +                             (82b) 

In the third examples below, a big difference has occurred between SPH and MPS solutions. 
1) Exponential Distribution of the Initial Density 
The initial conditions are given by 

( )0 0.5 ,i ix x i L N= = +                                (83a) 

20.5exp ,
0.2

i
i

x L
L

ρ
 − = −     

                              (83b) 

0.iu =                                       (83c) 
The boundary conditions are specified as 

0 1 1 2, ;N Nρ ρ ρ ρ− −= =                                 (84a) 
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 ρ in x0 ρ in x 

FDM  

 

SPH0 

  

MPS 

  

Figure 14. Rectangular distribution of the initial density with G = 0.0015. 
 

0 1 1 2, .N Nu u u u− −= =                                  (84b) 
The computational conditions are as follows: 

4L = , 41N = , 0.1ν = , d 0.00025t = , 20000dendt t= , d for SPH0i ixγ = , 
2d for MPSi ih x= , 0.005G = , _ 8 for SPH0 and 2 for MPSend corN = . 

The numerical results are shown in Figure 15. The FDM uses the central differences for the first and second 
space derivatives, and the precision of FDM is considered high. In this example, the FDM, SPH and MPS solu-
tions becomes similar. 

2) The Trapezoidal Distribution of the Initial Density 
The initial conditions are given by 

( )0 0.5i ix x i L N= = + ,                               (85a) 
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 ρ in x0 ρ in x 

FDM  

 

SPH0 

  

MPS 

  

Figure 15. Exponential distribution of the initial density. 
 

( )

( )

101 0.35 0.025 when 0.25 0.35

1 0.025 when 0.35 0.65
101 0.65 0.025 when 0.65 0.75

0 0.025 otherwise,

i i

i
i

i i

x L L x L
L

L x L

x L L x L
L

ρ

 + − + ≤ <

+ ≤ <= 

 − − + ≤ <

 +

                 (85b) 

0iu = ,                                      (85c) 

where the initial density distribution was smoothened using the five point running average: 

( )2 1 1 2
1
5 i i i i i iρ ρ ρ ρ ρ ρ− − + ++ + + + → .                          (86) 
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The boundary conditions are specified as 
0 1 1 2, ;N Nρ ρ ρ ρ− −= =                                 (87a) 

0 1 1 2, .N Nu u u u− −= =                                 (87b) 
The computational conditions are as follows: 

4L = , 41N = , 0.02ν = , d 0.00025t = , 30000dendt t= , 0.0015G = , 
d for SPH0i ixγ = , 2d for MPSi ih x= , _ 4 for SPH0 and 2 for MPSend corN = . 

The numerical results are shown in Figure 16. The FDM uses the central differences for the first and second 
space derivatives, and the precision of FDM is considered high. In this example, small difference is observed in 
the FDM, SPH and MPS solutions. 

3) The Flat-Slope-Flat Distribution of the Initial Velocity 
 

 ρ in x0 ρ in x 

FDM  

 

SPH0 

  

MPS 

  

Figure 16. Trapezoidal distribution of the initial density. 
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The initial conditions are given by 
( )0 0.5 ,i ix x i L N= = +                                (88a) 

1,iρ =                                       (88b) 

( )

0.5 when 0.25
2 0.5 when 0.25 0.75

0.5 when 0.75

i

i i i

i

x L

u x L L x L
L

L x

<
= − − ≤ ≤

− ≤

                     (88c) 

The boundary conditions are specified as 
0 11, 1;Nρ ρ −= =                                   (89a) 

0 10.5, 0.5.Nu u −= = −                                 (89b) 

The computational conditions are as follows: 

4L = , 41N = , 0.02ν = , d 0.00025t = , 10000dendt t= , 0G = , d for SPH0i ixγ = , 
2d  for MPSi ih x= , _ 8 for SPH0 and 2 for MPSend corN = . 

Since we assume G = 0 in this example, the equation becomes Burgers equation. 
a) Comparison of FDM Solution with the Analytical One  
The central differences were used for the first and second space derivatives. As shown in Figure 17. The 

FDM solution is a very good approximation of the analytical solution [11]. 
b) Comparison of FDM, SPH0 and MPS Solutions  
Figure 18 and Figure 19 show the comparisons of ρ and u among FDM, SPH0 and MPS solutions. SPH0 and 

MPS solutions do not give good approximations. With respect to the velocity u, the difference between SPH0 
and MPS is big. 

7. Modified Gaussian Weight 
Gaussian-type weights of finite support with C1 continuity are given as follows: 

( )

22 2 2 4 2

2 2 2 4 2

2
2

2

2exp 1 1 exp
2 2

πexp cos ,
22

x x x x x
h h h

w x
x x

h

α α
γ γ

α
γ

       
 − − = − + −      
       = 

   −      

         (90a), (90b) 

 

 
Figure 17. Comparison of FDM solution with the analytical 
one ((a) FDM solution; (b) Exact solution). 
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 ρ in x0 ρ in x 
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Figure 18. Comparison of density ρ. 
 
where α  satisfies 

( ) ( )
( )

2 2 22 2 21 2
22 2 00

0 2 22 1 22
22 00

2 exp 1 d2 exp 1 d
22

1 d 2 d
ππ 2 exp cos d .2 exp cos d
2222

h

h h

h
h

h xx x h x xx
h

w x x w x x
h x xx x h xx

h

αα
γγ

αα
γγ

−

      − − − −     
     = = = = 

       −−              

∫∫
∫ ∫

∫∫
  (91) 

The first and the second derivatives of ( )w x  given by Equation (90a) are given by 

( )
5 2

3
2 2 4 2 2 2 4 2

4 1 4 2 exp
2

x xw x x x
h h h h

α
γ γ γ γ

      ′ = − + + + − −      
      

,                (92a) 
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Figure 19. Comparison of velocity u. 
 

( )
2

2 4 6
2 2 4 2 2 4 2 4 4 2 4 4 2

4 1 12 10 1 9 2 1 exp
2
xw x x x x

h h h h h h
α

γ γ γ γ γ γ γ
        ′′ = − + + + + − + + −        

        
.     (92b) 

Numerical examples are shown in Figure 20. When h is small, the accuracy becomes low. As has already 
pointed out in Section 5.1.1, there exist large errors at the boundaries. The numerical results agree well with the 
exact ones on overall. In the examples, γ is equal to dx = L/N = 0.1 and the accuracy seems sufficient when h is 
bigger than or equal to 4dx. 

8. Conclusions 
The author has once shown how to obtain the partial derivative in an irregular mesh using the moving least  
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h d dxφ  2 2d dxφ  

0.2 

  

0.4 

  

0.8 

  

Figure 20. Effect of support 2h ( ( )sin 2πx Lφ = ; L = 4, N = 40, γ = 0.1, h = 0.2, 0.4, 0.8). 

 
square method [1]. A similar problem is discussed from a different viewpoint in SPH. Gingold & Monaghan [2] 
and Lucy [3] have developed Smooth Particle Hydrodynamics method (SPH). We have extended SPH theoreti-
cally in the present paper. 

In Vortex Blob Method (VBM), the abduction is approximated reasonably. However, the diffusion of vortices 
can’t be approximated precisely. We have shown in the present paper that this problem can be solved, if we ap-
ply the ideas developed by SPH. 

Moving Particle Semi-implicit method (MPS) uses a similar dscretization of the initial and boundary value 
problem as SPH and VBM. However, the mathematical background of MPS is not sufficient. We have shown in 
the present paper that the mathematical background of the discrete gradient operator is strengthened by applying 
the ideas developed by SPH. However, that of the discrete Laplacian operator could not given. 
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The discrete gradient and Laplacian operators of SPH include the first, first and second derivatives of the 
weight function with respect to the space coordinates, respectively. On the other hand, those of MPS include 
only the weight function itself. This may be the biggest difference between the discrete differential operators in 
SPH and MPH. 

In the present paper, solutions by FDM (Finite Difference Method), SPH and MPS are compared numerically 
in detail. 

1) Effects of mesh on the discrete gradient and Laplacian operators were studied. MPS showed good results 
with respect to the random mesh. 

2) The FDM, SPH and MPS were applied to the initial value problems, and the effects of the difference of the 
solution method were studied. In some cases, the solutions of initial value problem showed a difference between 
SPH and MPS. 

3) The discrete Laplacian operator of SPH is sensitive to the spacial discontinuities of the solution function. 
Hence, in the case of the initial value problem, the discontinuity in the initial condition should be smoothened 
beforehand, and the small amount of the artificial viscosity should be introduced. 

4) The author has once studied a mathematical background of MPS theoretically [1] and did some numerical 
calculations. In very limited cases, the discrete Laplacian operator of MPS can be obtained mathematically. 
However, the generalization to the general mesh was not obtained. Hence, we are obliged to apply the Laplacian 
operator as a bold approximation in case of the general mesh. 

5) Recently, Ng, Hwang and Sheu [6] discussed the accuracy of the discrete Laplacian operator of MPS theo-
retically and numerically. They clarified an important aspect of the properties of the operator. As one of the 
properties, they pointed out in 2 in conclusion of Ref. [6] that MPS gave generally a favorable result in case of 
the irregular mesh. We also had a similar impression as expressed in (1) above. 

The support of Gaussian weight in SPH is infinite. In the present paper, weights of a Gaussian-type of finite 
support with C1 continuity were also given. 
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Abstract 
The continuous approximations play a vital role in N-body simulations. We constructed three dif-
ferent types, namely, one-step (cubic and quintic Hermite), two-step, and three-step Hermite in-
terpolation schemes. The continuous approximations obtained by Hermite interpolation schemes 
and interpolants for ODEX2 and ERKN integrators are discussed in this paper. The primary focus 
of this paper is to measure the accuracy and computational cost of different types of interpolation 
schemes for a variety of gravitational problems. The gravitational problems consist of Kepler’s 
two-body problem and the more realistic problem involving the Sun and four gas-giants—Jupiter, 
Saturn, Uranus, and Neptune. The numerical experiments are performed for the different integra-
tors together with one-step, two-step, and three-step Hermite interpolation schemes, as well as 
the interpolants. 

 
Keywords 
N-Body Simulation, Integrators, Interpolation Schemes 

 
 

1. Numerical Integrators and Interpolants 
Explicit Runge-Kutta-Nyström methods (ERKN) were introduced by E. J. Nyström in 1925 [1]. Here, we are 
using two variable-step-size ERKN integrators: Integrator ERKN689 is a nine stage, 6-8 FSAL pair [2] and 
ERKN101217 is a seventeen stage, 10-12 non-FSAL pair [2]. Dormand and Prince [3] and then Baker et al. [4] 
developed continuous approximation with embedded Runge-Kutta-Nyström methods, in which a third RKN pro- 
cess of order p* was used to approximate the solutions, ( )1ny t α− +  and ( )1ny t α− +′ , where 1 1 1n n nt t hα α− + − −= +  
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with α  typically in (0, 1]. For ERKN101217, we used three existing interpolants: a 23-stage interpolant with 
10p∗ = , a 26-stage interpolant with 11p∗ = , and a 29-stage interpolant with 12p∗ = . The coefficients for 

these interpolants are not tabulated in this paper but are freely available on-line [4]. For ERKN689, we used an 
8th-order interpolant with 12 stages. The coefficients for the continuous approximation of ERKN689 were pro-
vided by P. W. Sharp (private communication). 

For the direct numerical approximation of systems of second-order ODEs, Hairer, Nørsett and Wanner [5] 
developed an extrapolation code ODEX2 based on the explicit midpoint rule with order selection and step-size 
control. The ODEX2 integrator is good for all tolerances, especially for high arithmetic precision, for example, 
10−20 or 10−30. For ODEX2 integrator we used the built-in interpolant. 

Störmer methods are an important class of numerical methods for solving systems of second-order ordinary 
differential equations. Störmer methods were introduced by Störmer [6]. These methods have long been utilized 
for accurate long-term simulations of the solar system [7]. Grazier [8] recommended a fixed-step-size Störmer 
method of order 13 that used backward differences in summed form, summing from the highest to lowest dif-
ferences. In this paper we consider an order-13, fixed-step-size Störmer method and refer to it as the -13S  in-
tegrator. 

1.1. Hermite Interpolation Schemes 
Hermite interpolation uses derivative and function values and is named after Charles Hermite (1822-1901). We 
used four schemes: one-step (cubic and quintic Hermite), two-step and three-step Hermite interpolation schemes. 
The cubic Hermite interpolation polynomial is of degree 3, while the quintic, two-step and three-step Hermite 
interpolation polynomials are of degrees 5, 8 and 11, respectively. The interpolation schemes are derived using a 
Newton divided difference approach, which is described in Section 1.1.1. There is a second approach, which we 
call the direct approach that is frequently used by other researchers; for example, see [9]. This approach is par-
ticularly suited for cubic and quintic Hermite interpolation schemes, and we describe it in Sections 1.1.2 and 
1.1.3. 

1.1.1. Newton Divided Difference Approach 
To determine the interpolating polynomial ( )mP t  for the m points ( ),j jt y , 0,1, , 1j m= − , using the New-
ton divided difference (NDD) approach, we write ( )mP t  as  

( ) ( ) ( )( ) ( ) ( )0 1 0 2 0 1 0 1 ,m m mP t a a t t a t t t t a t t t t −= + − + − − + + − −   

where the a’s are calculated from the divided differences. The ith divided difference can be calculated using  

[ ] [ ] [ ]
( )

1 0 1
0 1

0

, , , ,
, , , ,i i

i
i

f t t f t t
f t t t

t t
−−

=
−

 

  

see Table 1. We now discuss how the NDD must be modified when derivative values are used. Let us consider 
the first-order differences in Table 1. For example, if 1 0t t=  then we have  

[ ] ( )
1 0

0 1 0lim , .
t t

f t t f t
→

′=  

Similarly, for the second-order differences in Table 1, if, for example, 2 0t t=  then we find  

[ ] ( )
2 0

0
0 1 2lim , , .

2t t

f t
f t t t

→

′′
=  

Hence, for Hermite interpolation schemes we can use the NDD approach if the derivatives replace the cor-
responding divided differences.  

1.1.2. Cubic Hermite Interpolation 
In this section and the next, we describe the direct approach for obtaining the cubic and quintic Hermite poly-
nomials. The cubic Hermite interpolation polynomial ( )3P t  for the time-step from 1nt t −=  to nt t=  interpo-
lates the data ( ),n i n it y− −  and ( ),n i n it y− −′  at time n it − , for 1i =  and 0. In the direct approach, the cubic Her-
mite interpolation polynomial is written as  
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Table 1. An illustrative Newton divided difference table. 

j  jt  ( )jf t       

0 0t  0y       

   [ ]0 1,f t t      

1 1t  1y   [ ]0 1 2, ,f t t t     

   [ ]1 2,f t t   [ ]0 1 2 3, , ,f t t t t    

2 2t  2y   [ ]1 2 3, ,f t t t   [ ]0 1 2 3 4, , , ,f t t t t t   

   [ ]2 3,f t t   [ ]1 2 3 4, , ,f t t t t   [ ]0 1 2 3 4 5, , , , ,f t t t t t t  

3 3t  3y   [ ]2 3 4, ,f t t t   [ ]1 2 3 4 5, , , ,f t t t t t   

   [ ]3 4,f t t   [ ]2 3 4 5, , ,f t t t t    

4 4t  4y   [ ]3 4 5, ,f t t t     

   [ ]4 5,f t t      

5 5t  5y       

 
( )3 0 1 1 1 2 3  ,n n n nP t a y a Hy a y a Hy− −′ ′= + + +  

where,  

( ) ( )2
0 1 2 1 ,a τ τ= − +  

( )2
1 1 ,a τ τ= −  

( )2
2 3 2 ,a τ τ= −  

( )2
3 1 ,a τ τ= −  

and 1n nH t t −= −  with ( )1nt t Hτ −= − . Since the values of y and y′  at both ends of each step are interpo-
lated, the piecewise defined approximation ( )numy t  formed from the cubic Hermite polynomial is continuous 
and has a continuous first derivative.  

1.1.3. Quintic Hermite Interpolation 
The quintic Hermite interpolation polynomial ( )5P t  for the time-step from 1nt t −=  to nt t=  interpolates the 
data ( ),n i n it y− − , ( ),n i n it y− −′ , and ( ),n i n it y− −′′  at time n it − , for 1i =  and 0. As for cubic Hermite interpolation, 
the quintic Hermite interpolation polynomial can be derived using a direct approach and written as  

( ) 2 2
5 0 1 1 1 2 1 3 4 5  ,n n n n n nP t a y a Hy a H y a y a Hy a H y− − −′ ′′ ′ ′′= + + + + +  

where,  

( ) ( )3 2
0 1 6 3 1 ,a τ τ τ= − + +  

( ) ( )3
1 1 3 1 ,a τ τ τ= − +  

( )3 2
2 1 2,a τ τ= −  

( )3 2
3 6 15 10 ,a τ τ τ= − +  

( )( )3
4 1 3 4 ,a τ τ τ= − −  

( )23
5 1 2,a τ τ= −  
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and 1n nH t t −= −  with ( )1nt t Hτ −= − , as before. Since the values of y, y′ , and y′′  at both ends of each step 
are interpolated, the piecewise defined approximation ( )numy t  formed from the quintic Hermite polynomial is 
continuous and has continuous first and second derivatives.  

1.1.4. Two-Step Hermite Interpolation Polynomial 
The two-step Hermite interpolation polynomial ( )8P t  for the two-time-steps from 2nt t −=  to nt t=  interpo-
lates the data ( ),n i n it y− − , ( ),n i n it y− −′ , and ( ),n i n it y− −′′  at time n it − , with 2,1,i =  and 0. The two-step Hermite 
interpolation polynomial ( )8P t  can then be written in Horner’s nested multiplication form as  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )(((
( ) ( ) ( )( )( )( ))))

8 11 2 22 2 33 2 44 1 55 1

66 1 77 88 99 ,

n n n n n

n n n

P t D t t D t t D t t D t t D t t

D t t D t t D t t D

− − − − −

−

= + − + − + − + − + −


× + − + − + − 


 

where the coefficients iiD , 1, ,9i =  , are obtained using a NDD table. Since the values of y, y′ , and y′′  at 
both ends of each step are interpolated, the piecewise defined approximation ( )numy t  formed from the two-step 
Hermite polynomial is continuous and has continuous first and second derivatives.  

1.1.5. Three-Step Hermite Interpolation Polynomial 
Similarly, the three-step Hermite interpolation polynomial interpolates the data ( ),n i n it y− − , ( ),n i n it y− −′ , and 
( ),n i n it y− −′′  at time n it − , for 3, 2,1,i =  and 0. Hence, it is the degree-11 polynomial ( )11P t  defined over a 
three-time-step from 3nt t −=  to nt t= . Using Horner’s nested multiplication form, we can write ( )11P t  as  

( ) ( ) ( ) ( ) ( ) ( )( )( )( )( )
( ) ( ) ( ) ( ) ( )( )((((
( )( ))))))

11 11 3 22 3 33 3 44 2 55 2

66 2 77 1 88 1 99 1 1010

1111 1212 .

n n n n n

n n n n n

n

P D t t D t t D t t D t t D t t

D t t D t t D t t D t t D t t

D t t D

− − − − −

− − − −

   = + − + − + − + − + −  
× + − + − + − + − + −


× + −  

 

As for the two-step Hermite interpolation polynomial, the coefficients iiD , 1, ,12i =  , of ( )11P t  are ob-
tained using NDD. Since the values of y, y′ , and y′′  at both ends of each step are interpolated, the piecewise 
defined approximation ( )numy t  formed from the three-step Hermite polynomial is continuous and has conti-
nuous first and second derivatives. 

We compared the maximum error in position and the CPU-time for P3 and P5 evaluated using NDD and the 
direct approach. The comparison was done for one period of Kepler problem for eccentricities of 0.05 to 0.9 (see 
Section 2.1 for more details on the experiment), and the Jovian problem [10]. 

For the two-body problem, no significant differences in the maximum error as CPU-time were observed be-
tween these two approaches. For the Jovian problem, the direct approach takes approximately half the CPU-time 
of the NDD approach. The coefficients of the polynomial for the NDD approach depend on the components of 
the solution vector. For the direct approach the coefficients are independent of the components, so they can be 
used as a vector to approximate polynomials and that will save CPU-time. 

In the rest of the paper, cubic and quintic Hermite interpolation schemes are implemented using the direct ap-
proach. For two-step and three-step Hermite interpolation schemes we implemented the NDD approach, because 
it is really difficult to find the coefficients for the direct approach.  

2. Numerical Experiments 
Here, we examine the error growth in the position and velocity for the Kepler problem. The experiments for 
short-term integrations are performed using four different types of interpolation schemes applied to the Kepler 
problem over the interval of 2π. 

2.1. Kepler Problem with Different Eccentricities 
The solution to the Kepler problem is periodic with period 2π. We do not have to calculate the reference solution, 
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so the Kepler problem is well suited for testing the accuracy of integration over a short time interval. This as-
sumes the step-size is chosen so that 2πt =  is hit exactly. 

The error in the position and velocity of the Kepler problem is given by the L2-norm  

( ) ( ) ( )
( ) ( ) ( )

num true 2

num true 2

 ,

 ,
r

v

E t r t r t

E t v t v t

= −

= −
 

where ( )numr t  and ( )truer t  are the vectors of the numerical and true solutions, and ( )numv t  and ( )truev t  are 
the vectors of the derivatives to the numerical and true solutions, respectively. 

The graphs in Figure 1 are for experiments performed with the cubic, quintic, two-step, and three-step Her-
mite interpolation schemes applied to the Kepler problem over the interval [ ]0,2π  for eccentricities in the 
range [0.05, 0.9]; note that, in reality, planets and test particles do not have eccentricity 0, and we used 0.05 as 
an approximate upper bound for the eccentricities of the Jovian planets. The selection of these interpolation 
schemes is motivated by the fact that they can be used with all the integrators described in this paper. The inter-
polants, on the other hand, are related to specific integrators; for example, the 12-stage interpolant can only be 
used with the ERKN689 integrator. For the experiments shown in Figure 1, the interval of integration is subdi-
vided into 30 evenly spaced sub-intervals; experiments with different numbers of sub-intervals are recorded in 
Table 2. We then evaluate the position and velocity at 10 evenly spaced points on each sub-interval using dif-
ferent interpolation schemes. Note that we also tested with up to 100 sample points and observed a variation in 
the error of not more than 1%. The information, such as, positions, velocities, and times, are saved in separate 
files. In a post-processing step, we then calculate the errors in the positions and velocities with respect to the 
analytical solution that we obtain at the stored values of time. The velocity polynomials for all these interpola-
tion schemes are obtained by differentiating their corresponding position polynomials. 

From Figure 1, we observe a clear pattern; as the eccentricity increases, the maximum error in the position 
also increases. The variation in the error is understandable, because the error depends upon the eccentricity. To 
illustrate this fact, recall that the analytical solution to the Kepler problem is given by  

( ) ( )( ) ( ) ( )
T

2
1 2, cos , 1  sin ,y t y t e eη η = − −  

                        (1) 

 

 
Figure 1. The maximum global error in position for the cubic, quintic, 2-step, and 3-step 
Hermite interpolation schemes against different eccentricities applied to the two-body prob-
lem over a period of 2π. 



S. Rehman 
 

 
451 

Table 2. The maximum global error in position for eccentricity 0.05 attained by different interpolation schemes applied to 
the Kepler problem over the interval [0, 2π] with four choices of numbers of evenly spaced sub-intervals. The dash means 
the combination is not used. 

Nsub Cubic Quintic 2-step 3-step 

17 060.71 10−×  080.19 10−×  110.87 10−×  120.21 10−×  

79 080.15 10−×  120.19 10−×  160.56 10−×  160.55 10−×  

255 100.14 10−×  150.18 10−×  160.55 10−×  - 

1080 130.44 10−×  160.56 10−×  - - 

 
where η  is the eccentric anomaly satisfying ( ) sint eη η= −  and the interpolation error, for example, for the  

y1-component of this solution can be written as 
( ) ( )
( )

1
11

1 !

p
p y

h
p

ξ
α

+
+

+
. The first three derivatives of y1 are  

( )
( )

1 sind
 ,

d 1 cos
y
t e

η
η

−
=

−
 

( )
( )( )

2
1

2 3

cosd
 ,

d 1 cos

ey
t e

η

η

−
=

−
 

( ) ( )( )
( )( )

23
1

3 5

sin 1 2 cos 3d
.

d 1 cos

e ey
t e

η η

η

+ −
=

−
 

It is clear that these and all subsequent derivatives are expected to involve the factor ( )( )1 1 cose η− . Since 
the minimum value of ( )1 cose η−  gets smaller and smaller as e increases, it is expected that the error in-
creases as e increases; a similar argument holds for the y2-component. Indeed, for all interpolation schemes the 
minimum error in the position occurs at eccentricity 0.05 and the maximum error at eccentricity 0.9 in Figure 1. 
We also observe in Figure 1 that, for small eccentricity like e = 0.05, the difference in the errors between con-
secutive interpolation schemes is approximately two orders of magnitude. As e increases to 1, this difference 
decreases and all four errors in Figure 1 appear to converge. We also computed the error in the velocity and 
found that it is nearly two orders of magnitude larger than the error in the position. These experiments were also 
performed in quadruple-precision, but there was hardly any difference between the estimated errors obtained in 
double- and quadruple-precision. For example, using a 3-step interpolation scheme with eccentricity 0.05 and 
0.9, the differences between the estimated errors in the position obtained in double- and quadruple-precision are 
4.40 × 10−15 and 1.67 × 10−14, respectively. We conclude that the interpolation schemes are not affected a great 
deal by the round-off error when using 30 evenly spaced sub-intervals. 

As mentioned earlier, the same sets of experiments described in Figure 1, were also done with different 
numbers of sub-intervals. We experimented with 17, 79, 255, and 1080 evenly spaced sub-intervals over the in-
terval [ ]0,2π . The associated errors for e = 0.05 are shown in Table 2. This particular selection of the number 
of sub-intervals is due to the fact that we wish to maintain the best observed accuracy of the integrators ODEX2, 
ERKN101217, ERKN689, and -13S ; see [10] and note that we use a time-step of 4 days for -13S . For exam-
ple, the ODEX2 integrator applied to the Jovian problem achieves best accuracy using tolerance 10−16 and an 
average time-step of approximately 260 days over one million years. Since Jupiter’s orbital period is approx-
imately 4320 Earth days, a time-step of 260 days gives approximately 17 steps. 

The results in Table 2 show reasonably good agreement with the expected values calculated from the orders 
of the polynomial, discounting the possible increase in round-off error from using a higher-order interpolation 
scheme and a large number of sub-intervals. For example, using the cubic Hermite interpolation scheme, and 
going from 17 to 79 sub-intervals, the expected value is ( ) ( )4 06 0917 79 0.71 10 1.52 10− −× × ≈ ×  which has very 
good agreement with the value 0.15 × 10−08 mentioned in Table 2. 

From Table 2 we find that the accuracy for a given interpolation scheme improves if the number of sub-in- 
tervals increases. We also deduce from Table 2 that it makes no sense to use any of the four interpolation 
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schemes with ODEX2 if the required maximum global error is 10−15 and 17 sub-intervals are used. For 79 sub- 
intervals (used for ERKN101217) only the 2-step and 3-step Hermite interpolation schemes achieve the required 
accuracy. Similarly, for ERKN689, the quintic and 2-step interpolation schemes achieve the required accuracy, 
whereas for the -13S  integrator, only the quintic Hermite interpolation scheme does.  

2.2. Computational Cost of Interpolation Schemes 
Let us now consider the CPU-time by looking at individual interpolation schemes. Our expectation, at least for 
the interpolation schemes, is that the CPU-time is proportional to the number of multiplications. If one interpo-
lation scheme uses twice as many multiplications then the CPU-time is expected to be twice as large. There will 
not be many divisions, and the number of subtractions and additions is typically proportional to the number of 
multiplications. Normally, when timing a program, an overhead is introduced. Therefore, care has been taken 
not to include such overheads in the final results. We also checked reproducibility of the results and observed a 
maximum variation of not more than 2.5%. 

As discussed earlier, there are two different approaches to form interpolation schemes. Here, the experiments 
are performed using a direct approach for cubic and quintic Hermite interpolation, and the Newton divided dif-
ference approach for 2-step and 3-step Hermite interpolation schemes. In most cases, interpolation schemes are 
split into two subroutines, one for finding the coefficients and one for evaluating the polynomials. For 
ERKN689 and ERKN101217, with the interpolants we have additional stage derivatives (function evaluations). 
Overall, we have three different groups of interpolation schemes: 

1) For cubic and quintic Hermite interpolation schemes, we evaluate the coefficients of the polynomial, which 
are independent of the components, and the polynomial as one subroutine. 

2) For 2-step and 3-step Hermite interpolation schemes, we have two subroutines:  
a) The calculation of the coefficients by forming a Newton divided difference table;  
b) The evaluation of the polynomial. 
3) For the interpolants, we have three subroutines:  
a) The evaluation of the coefficients b ;  
b) The evaluation of the additional stage derivatives;  
c) The evaluation of the polynomial using a) and b). 
For ODEX2, the pieces of information required to form the interpolant are considered part of the integration, 

and we only consider the evaluation of the polynomial; see Table 5. 
Since the coefficients of the polynomials for cubic and quintic interpolations are independent of the compo-

nents, the experiments for these interpolation schemes are performed as one unit. As can be seen from the for-
mulae in Sections 1.1.2 and 1.1.3, the quintic Hermite interpolation scheme uses approximately 93% more mul-
tiplications than cubic Hermite interpolation when applied to the Jovian problem. When we did our experiment, 
we found that the quintic Hermite interpolation scheme uses approximately 96% more CPU-time than cubic 
Hermite interpolation, which is in good agreement with the expected value. 

Table 3 shows the CPU-time for finding the stage derivatives of the pairs (without the cost of additional stage 
derivatives) used in ERKN689 and ERKN101217 when applied to the Jovian problem. With ERKN689 we use 
the property FSAL (first same as last), so that we need only 8 derivative evaluations per step. Similarly, the 
12-stage interpolant has effectively 11 stage derivatives. Observe from Table 3 that the average CPU-time con-
sumed per stage is approximately 8.74 × 10−07 and 8.71 × 10−07 for ERKN689 and ERKN101217, respectively. 
Therefore, the expected CPU-time for ERKN689 with a 12-stage interpolant is approximately 9.61 × 10−06. For 
ERKN101217, the expected CPU-time for finding coefficients is approximately 2.00 × 10−05, 2.26 × 10−05, and 
2.52 × 10−05 with 23-stage, 26-stage, and 29-stage interpolants, respectively.  

Table 4 gives the CPU time needed to find the coefficients of the interpolation schemes and evaluate all the 
derivatives for the interpolants when solving the Jovian problem. We observe that all values in Table 4 have 
reasonably good agreement with the prescribed values for CPU-time. Note also that the 3-step Hermite interpo-
lation scheme in Table 4 uses approximately 96% more multiplications than the 2-step Hermite interpolation 
scheme, which is reasonably well matched by our finding of 93%. 

Table 5 shows the CPU-time for evaluating the position and velocity components using the different interpo-
lation polynomials. The 3-step interpolation scheme uses approximately 76% more CPU-time than the 2-step 
interpolation, which is again in agreement with the CPU-times observed in Table 4. Similarly, the difference in  
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Table 3. The CPU-time in seconds for evaluating the stage derivatives (without the 
cost of additional function evaluations) for ERKN689 and ERKN101217 applied to 
the Jovian problem. 

Integrator 
ERKN689 ERKN101217  

9-stage 17-stage 

CPU-time 066.99 10−×  051.48 10−×  

 
Table 4. The CPU-time in seconds for finding the coefficients of the interpolation schemes and evaluating all the stage de-
rivatives of the interpolants applied to the Jovian problem. 

Interpolation   ERKN689 ERKN101217 

Polynomial 2-step 3-step 12-stage 23-stage 26-stage 29-stage 

CPU-time 62.83 10−×  65.54 10−×  69.54 10−×  52.00 10−×  52.32 10−×  52.66 10−×  

 
Table 5. The CPU-time in seconds for evaluating the position and velocity polynomials using different interpolation poly-
nomials applied to the Jovian problem. 

Interpolation   ERKN68 ERKN101217 ODEX2 

Polynomial 2-step 3-step 12-stage 23-stage 26-stage 29-stage Interpolant 

CPU-time 76.7 10−×  61.18 10−×  72.97 10−×  74.42 10−×  74.96 10−×  75.50 10−×  61.48 10−×  

 
CPU-time between the 23-stage and 29-stage interpolants is twice the difference between the 23-stage and 26- 
stage interpolants which is in good agreement with the difference observed in Table 4.  

3. Summary 
The primary objective of this paper was to discuss the accuracy and computational cost of different interpolation 
schemes while performing N-body simulations. The interpolation schemes play a vital role in these kinds of si-
mulations. We constructed three different types, namely, one-step (cubic and quintic Hermite), two-step and 
three-step Hermite interpolation schemes. For short-term simulations, we investigated the performance of these 
interpolation schemes applied to the Kepler problem over the interval [0, 2] for eccentricities in the range [0.05, 
0.9]. We observed that the maximum error in position was monotonically increasing as a function of eccentricity. 
For a given number of sub-intervals we used in this paper, the higher-order interpolation schemes achieve better 
accuracy and for a given interpolation scheme the accuracy improves if the number of sub-intervals is increased. 
We also investigated the CPU-time by looking at individual interpolation schemes. Our expectation, at least for 
the interpolation schemes, was that the CPU-time was proportional to the number of multiplications. For exam-
ple, the quintic Hermite interpolation scheme uses approximately 93% more multiplications than cubic Hermite 
interpolation when applied to the Jovian problem. When we did our experiment, we found that the quintic Her-
mite interpolation scheme used approximately 96% more CPU-time than cubic Hermite interpolation, which 
was in good agreement with the expected value. We also checked reproducibility of the results and observed a 
maximum variation of not more than 2.5%. 
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Abstract 
In this work, an extended Jacobian elliptic function expansion method is proposed for construct-
ing the exact solutions of nonlinear evolution equations. The validity and reliability of the method 
are tested by its applications to the system of shallow water wave equations and modified Liou-
ville equation which play an important role in mathematical physics. 
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1. Introduction 
The nonlinear partial differential equations of mathematical physics are major subjects in physical science [1]. 
Exact solutions for these equations play an important role in many phenomena in physics such as fluid mechan-
ics, hydrodynamics, optics, plasma physics and so on. Recently many new approaches for finding these solu-
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tions have been proposed, for example, tanh-sech method [2]-[4], extended tanh-method [5]-[7], sine-cosine 
method [8]-[10], homogeneous balance method [11] [12], F-expansion method [13]-[15], exp-function method  

[16], the modified simple equation method [17], the ( )( )exp φ ξ− -expansion method [18], G
G
′ 

 
 

-expansion  

method [19]-[22], Jacobi elliptic function method [23]-[26] and so on. 
The objective of this article is to apply the extended Jacobian elliptic function expansion method for finding 

the exact traveling wave solution the system of shallow water wave equations and modified Liouville equation 
which play an important role in mathematical physics. 

The rest of this paper is organized as follows: In Section 2, we give the description of the extended Jacobi el-
liptic function expansion method. In Section 3, we use this method to find the exact solutions of the nonlinear 
evolution equations pointed out above. In Section 4, conclusions are given. 

2. Description of Method 
Consider the following nonlinear evolution equation 

( ), , , , , 0,t x tt xxF u u u u u =                                  (1) 

where F is polynomial in ( ),u x t  and its partial derivatives in which the highest order derivatives and nonlinear 
terms are involved. In the following, we give the main steps of this method [23]-[26]. 

Step 1. Using the transformation 
( ) , ,u u x ctξ ξ= = −                                    (2) 

where c is wave speed, to reduce Equation (1) to the following ODE: 

( ), , , , 0,P u u u u′ ′′ ′′′ =                                    (3) 

where P is a polynomial in ( )u ξ  and its total derivatives, while d
d

' '
ξ

= . 

Step 2. Making good use of ten Jacobian elliptic functions, we assume that (3) has the solutions in these 
forms: 

( ) ( ) ( ) ( )1
0

1
, 1, 2,3, ,

N
j

i j i j i
j

u a f a f b g iξ ξ ξ ξ−

=

 = + + = ∑                      (4) 

with 
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 1

2 2

3 3

4 4

5 5

6 6

, ,

, ,

, ,

, ,

, ,

, ,

f sn g cn

f sn g dn

f ns g cs

f ns g ds

f sc g nc

f sd g nd

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

= =

= =

= =

= =

= =

= =

                               (5) 

where snξ , cnξ , dnξ , are the Jacobian elliptic sine function, the jacobian elliptic cosine function and the 
Jacobian elliptic function of the third kind and other Jacobian functions which is denoted by Glaisher’s symbols 
and are generated by these three kinds of functions, namely 

1 1 1, , , ,

, , ,

cnns nc nd sc
sn cn dn sn
sn dn sncs ds sd
cn sn dn

ξξ ξ ξ ξ
ξ ξ ξ ξ
ξ ξ ξξ ξ ξ
ξ ξ ξ

= = = =

= = =
                        (6) 

that have the relations 
2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1, 1, 1 ,

, 1 , 1 ,

sn cn dn m sn ns cs
ns m ds sc nc m sd nd

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

+ = + = = +

= + + = + =
                       (7) 
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with the modulus m ( )0 1 .m< <  In addition we know that 

2d d d, , .
d d d

sn cn dn cn sn dn dn m sn cnξ ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ

= = − = −                     (8) 

The derivatives of other Jacobian elliptic functions are obtained by using Equation (8). To balance the highest 
order linear term with nonlinear term we define the degree of u as [ ]D u n=  which gives rise to the degrees of 
other expressions as 

( )d d, .
d d

sq q
p

q q

u uD n q D u np s n q
ξ ξ

    
 = + = + +  
     

                       (9) 

According the rules, we can balance the highest order linear term and nonlinear term in Equation (3) so that n 
in Equation (4) can be determined. 

Noticed that tanhsnξ ξ→ , sechcnξ ξ→ , sechdnξ ξ→  when the modulus 1m →  and sinsnξ ξ→ , 
coscnξ ξ→ , 1dnξ →  when the modulus 0m → , we can obtain the corresponding solitary wave solutions and 

triangle function solutions, respectively, while when therefore Equation (5) degenerate as the following forms 

( ) ( ) ( ) ( )1
0

1
tanh tanh sech ,

N
j

j j
j

u a a bξ ξ ξ ξ−

=

 = + + ∑                      (10) 

( ) ( ) ( ) ( )1
0

1
coth coth coth ,

N
j

j j
j

u a a bξ ξ ξ ξ−

=

 = + + ∑                      (11) 

( ) ( ) ( ) ( )1
0

1
tan tan sec ,

N
j

j j
j

u a a bξ ξ ξ ξ−

=

 = + + ∑                       (12) 

( ) ( ) ( ) ( )1
0

1
cot cot csc .

N
j

j j
j

u a a bξ ξ ξ ξ−

=

 = + + ∑                       (13) 

Therefore the extended Jacobian elliptic function expansion method is more general than sine-cosine method, 
the tan-function method and Jacobian elliptic function expansion method. 

3. Application 
3.1. Example 1: The System of Shallow Water Wave Equations 
We first consider the system of the shallow water wave equation [27] in order to demonstrate the ( )( )exp φ ξ− - 
expansion method 

( ) 0,

0.
t xxxx

t x x

u uv v

v u vv

 + + =


+ + =
                                 (14) 

We use the wave transformation ( ) ( ),u x t u ξ= , x ctξ = −  to reduce Equations (14) to the following nonli-
near system of ordinary differential equations: 

0,
0,

cu vu uv v
u cv vv

′ ′ ′ ′′′− + + + =
 ′ ′ ′− + =

                               (15) 

where by integrating once the second equation with zero constant of integration, we find 
2

2
vu cv= −                                     (16) 

substituting Equation (16) into the first equation of Equation (15) we obtain 
2

233 0.
2
vv cv c v

 
′′′ ′+ − − = 

 
                              (17) 

Integrating Equation (17) with zero constant of integration, we find 
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2 3 23 1 0.
2 2

v cv v c v′′ + − − =                                (18) 

Balancing v′′  and 3v  in Equation (18) yields, 2 3 1N N N+ = ⇒ = . This suggests the choice of ( )v ξ  in 
Equation (18) as 

0 1 1 ,u a a sn b cn= + +                                   (19) 

where 0a , 1a  and 1b  are constant such that 1 0a ≠  or 1 0b ≠ . From (19), it is easy to see that 

1 1 ,u a cndn b sndn′ = −                                  (20) 
2 3 2 2 2

1 1 1 1 12 2 .u m sna a sn m m sn cnb a sn b cn′′ = − + + − −                       (21) 

Substituting Equations (19) and (21) into Equation (18) and equating all coefficients of 3sn , 2sn cn , 2sn , 
sncn , sn , cn , 0sn  respectively to zero, we obtain: 

2 3 2
1 1 1 1

1 32 0,
2 2

a m a a b− + =                                (22) 

2 2 3
1 1 1 1

3 12 0,
2 2

m b a b b− + =                                (23) 

2 2 2 2
1 1 0 1 0 1

3 3 3 3 0,
2 2 2 2

ca cb a a a b− − + =                             (24) 

1 1 0 1 13 3 0,ca b a a b− =                                  (25) 

2 2 2 2
1 1 0 1 0 1 1 1 1

3 33 0,
2 2

a m a ca a a a a b c a− − + − − − =                        (26) 

2 3 2
1 0 1 0 1 1 1

3 13 0,
2 2

b ca b a b b c b− + − − − =                            (27) 

( )2 2 3 2 2
0 1 0 0 1 0

3 1 3 0.
2 2 2

c a b a a b c a+ − − − =                           (28) 

Solving the above system with the aid of Maple or Mathematica, we have the following solution: 
Case 1. 

2
0 1 12 2, 2 , 0.c a m a m b= = ± + = ± =  

So that the solution of Equation (18) can be written as 
22 2 2 ,u m msn= ± + ±                                 (29) 

when 1m = , the solution can be in the form 

( )2 2tanh .u ξ= ± ±                                   (30) 

Case 2. 
2

0 1 12 , , .c a m a m b im= = ± − = ± = ±  

So that the solution of Equation (18) can be written as 
22 ,u m msn imcn= ± − ± ±                                (31) 

when 1m = , the solution can be in the form 

( ) ( )1 tanh sech .u iξ ξ= ± ± ±                               (32) 

Case 3. 
2

0 1 12 4 , 0, 2 .c a m a b im= = ± − = = ±  
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So that the solution of Equation (18) can be written as 
22 4 2 ,u m imcn= ± − ±                                 (33) 

when 1m = , the solution can be in the form 

( )2 2 sech .u i ξ= ± − ±                                 (34) 

3.2. Example 2: Modified Liouville Equation 
Now, let us consider the modified Liouville equation [28]. 

2 e 0,u
xx tta u u b β− + =                                  (35) 

respectively, where a , β  and b  are non zero and arbitrary coefficients. Using the wave transformation 
( ) ( ),u x t u ξ= , kx tξ ω= + , e uv β= , to reduce Equation (35) to be in the form: 

2 2 2 2 2 2
2 3 0.k a k av v v bvω ω

β β β β
   

′′ ′− − − + =   
   

                       (36) 

Balancing v v′′  and 3v  in Equation (36) yields, 2 3 2N N N N+ + = ⇒ = . Consequently, we have the for-
mal solution: 

( ) 2
0 1 1 2 2 ,u a a sn b cn a sn b sncnξ = + + + +                          (37) 

where 0a , 1a , 2a  are constants to be determined, such that 2 0a ≠  or 2 0b ≠ . It is easy to see that 
2

1 1 2 2 22 2 ,u a cndn b sndn dna sncn dnb sn dnb′ = − + − +                      (38) 

2 3 2 2 2 2 2 4 2 2 3
1 1 1 2 2 2

2 2
2 1 1 2 2 2

2 2 4 6 6

2 4 4 .

u m sna a sn m m sn cnb a m sn a sn m m sn cnb

m sncnb a sn b cn a a sn b sncn

′′ = − + + − + +

− − − + − −
           (39) 

Substituting (37) and (39) into Equation (36) and equating all the coefficients of 6sn , 5sn cn , 5sn , 4sn cn , 
4sn , 3sn cn , 3sn , 2sn cn , 2sn , sncn , sn , cn , 0sn  to zero, we deduce respectively 

( ) ( )
2 2 2

2 2 2 2 3 2
2 2 2 2 22 2 3 0,k a m b a m b a a bω

β β
 

− − + + − = 
 

                     (40) 

( )
2 2 2

2 2 3
2 2 2 2 24 3 0,k a a m b b a b bω

β β
 

− + − = 
 

                         (41) 

( ) ( )
2 2 2

2 2 2 2
1 2 1 2 1 2 1 2 2 1 24 4 3 6 3 0,k a m b b a m a b a a b a b a bω

β β
 

− − + + − − = 
 

               (42) 

( ) ( )
2 2 2

2 2 2 2
1 2 1 2 1 2 1 2 1 2 24 4 3 3 6 0,k a a m b m b a b b b b a a a bω

β β
 

− + + − + + = 
 

               (43) 

( ) ( )
2 2 2

2 2 2 2 2 2 2 2 2 2 2 2
1 2 1 2 0 1 2 0 2 1 1 2 2 2 1 2 0 22 6 3 3 6 3 3 3 0,k a m b m b a m a m a b a a a a a b b a b b a a bω

β β
 

− − + + + + + − + − − = 
 

 (44) 

( ) ( )
2 2 2

2 2 2 2 2 3
1 1 2 0 2 2 1 2 1 2 2 0 2 2 1 1 22 6 3 3 6 6 0,k a a m b m b a a m b b b b a b b a a b a b aω

β β
 

− + − + − + + + + = 
 

      (45) 

( )

( )

2 2 2
2 2 2

1 2 1 2 1 2 1 0 1 2

3 2 2
1 1 1 0 1 2 0 1 2 1 2 1 2 2

2 7

3 6 6 3 6 0,

k a b b a a a m a a m a m b b

b a a b a b b a a a a b b a b

ω
β β

 
− − − + + 

 

+ − − + + + =

                    (46) 
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( ) ( )
2 2 2

2 2 2 3 2
1 2 1 2 1 0 1 2 1 1 1 1 2 0 1 2 0 1 22 4 3 3 6 6 0,k a b a a b m b a m b a b a b b b b a a b a b aω

β β
 

− − − + − + − + + + = 
 

      (47) 

( ) ( )
2 2 2

2 2 2 2 2 2 2 2 2
2 0 1 2 0 2 0 1 0 1 2 0 1 2 0 2 1 1 24 2 4 2 3 3 3 3 3 6 0,k a a a m b a m a a b a a a b a a b a a b a b bω

β β
 

− − + − − + − + + + + = 
 

 (48) 

( ) ( )
2 2 2

2 2 2 2
2 2 2 0 2 0 1 1 0 1 1 2 0 1 22 4 6 3 3 0,k a a b b a m b a a m b b a a b b a b bω

β β
 

− − − − − + + + = 
 

           (49) 

( ) ( )
2 2 2

2 3
0 1 1 2 1 2 0 1 12 2 3 0,k a a b b a a b b a b bω

β β
 

− − + − + + = 
 

                    (50) 

( ) ( )
2 2 2

2 2 2 2
0 1 1 2 1 2 1 0 1 2 0 1 1 1 0 1 23 2 3 3 6 0,k a a a b b a a a m a m b b b a a a b a b bω

β β
 

− − − − − − + + + = 
 

        (51) 

( ) ( )
2 2 2

2 2 2 3 2
2 1 2 0 1 0 0 12 3 0,k a b b a a a b a a bω

β β
 

− − − + − + + = 
 

                   (52) 

Solving the above system with the aid of Maple or Mathematica, we have the following solution: 

( )2 2 2

0 2 1 2 2 1 2
2

2
, , , 1, , , 0, , 0.

k a
a a b k k m a a a a a b b

a
ω

β β
β

− −
= = = = ± = = − = = = =  

So that the solve of Equation (36) can be written in the form 

( ) ( )2 2 2 2 2 2
2

2 2
,

k a k a
v sn

b b
ω ω

β β

− −
= −                           (53) 

( ) ( )2 2 2 2 2 2
2

2 21 ln .
k a k a

u sn
b b
ω ω

β β β

 − −
 = −
 
 

                       (54) 

When 1m = , the solution can be in the form 

( ) ( )
( )

2 2 2 2 2 2
2

2 2
tanh ,

k a k a
v

b b
ω ω

ξ
β β

− −
= −                        (55) 

( ) ( )
( )

2 2 2 2 2 2
2

2 21 ln tanh .
k a k a

u
b b
ω ω

ξ
β β β

 − −
 = −
 
 

                     (56) 

4. Conclusions 
We establish exact solutions for the system of shallow water wave equations and modified Liouville equation 
which are two of the most fascinating problems of modern mathematical physics. 

The extended Jacobian elliptic function expansion method has been successfully used to find the exact travel-
ing wave solutions of some nonlinear evolution equations. As an application, the traveling wave solutions for 
the system of shallow water wave equations and modified Liouville equation, have been constructed using the 
extended Jacobian elliptic function expansion method. Let us compare between our results obtained in the 
present article with the well-known results obtained by other authors using different methods as follows: our re-
sults of the system of shallow water wave equations and modified Liouville equation are new and different from 
those obtained in [27] and [28] and Figure 1 and Figure 2 show the solitary wave solution of Equations  
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Figure 1. Solitary wave solution of Equation (30). 

 

 
Figure 2. Solitary wave solution of Equation (56). 

 
(30) and (56). It can be concluded that this method is reliable and proposes a variety of exact solutions NPDEs. 
The performance of this method is effective and can be applied to many other nonlinear evolution equations. 
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Abstract 
Computing the sign of the determinant or the value of the determinant of an n × n matrix A is a 
classical well-know problem and it is a challenge for both numerical and algebraic methods. In 
this paper, we review, modify and combine various techniques of numerical linear algebra and ra-
tional algebraic computations (with no error) to achieve our main goal of decreasing the bit-  
precision for computing detA or its sign and enable us to obtain the solution with few arithmetic 
operations. In particular, we improved the precision   H p2log  bits of the p-adic lifting algorithm 
(H = 2h for a natural number h), which may exceed the computer precision β (see Section 5.2), to at 
most   β  bits (see Section 6). The computational cost of the p-adic lifting can be performed in 
O(hn4). We reduced this cost to O(n3) by employing the faster p-adic lifting technique (see Section 
5.3). 

 
Keywords 
Matrix Determinant, Sign of the Determinant, p-Adic Lifting, Modular Determinant, Matrix  
Factorization, Bit-Precision 

 
 

1. Introduction 
Computation of the sign of the determinant of a matrix and even the determinant itself is a challenge for both 
numerical and algebraic methods. That is, to testing whether ( )det 0A > , ( )det 0A < , or det 0A =  for an n × 
n matrix A. In computational geometry, most decisions are based on the signs of the determinants. Among the 
geometric applications, in which the sign of the determinant needs to be evaluated, are the computations of con-
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vex hulls, Voronoi diagrams, testing whether the line intervals of a given family have nonempty common inter-
section, and finding the orientation of a high dimensional polyhedron. We refer the reader to [1]-[5], and to the 
bibliography therein for earlier work. These applications have motivated extensive algorithmic work on compu-
ting the value and particulary the sign of the determinant. One of the well-known numerical algorithms is 
Clarkson’s algorithm. In [6], Clarkson uses an adaption of Gram-Schmidt procedure for computing an ortho-
gonal basis and employs approximate arithmetics. His algorithm runs in time ( )3O d b  and uses 2 1.5b d+  bits 
to represent the values for a d × d determinant with b-bit integer entries. On the other hand, the authors of [7] 
proposed a method for evaluating the signs of the determinant and bounding the precision in the case where 

3n ≤ . Their algorithm asymptotic worst case is worse than that of Clarkson. However, it is simpler and uses re-
spectively b and ( )1b + -bit arithmetic. In this paper we examine two different approaches of computing the de-
terminant of a matrix or testing the sign of the determinant; the numerical and the algebraic approach. In partic-
ular, numerical algorithms for computing various factorizations of a matrix A which include the orthogonal fac-
torization A QR=  and the triangular factorizations A LU= , rA P LU= , and r cA P LUP=  seem to be the 
most effective algorithms for computing the sign of ( )det A  provided that det A  is large enough relative to 
the computer precision. Alternatively, the algebraic techniques for computing det A  modulo an integer M 
based on the Chinese remainder theorem and the p-adic lifting for a prime p use lower precision or less arith-
metic operations. In fact, the Chinese remainder theorem required less arithmetic operations than the p-adic lift-
ing but with higher precision due to (9). We also demonstrate some effective approaches of combining algebraic 
and numerical techniques in order to decrease the precision of the computation of the p-adic lifting and to intro-
duce an alternative technique to reduce the arithmetic operations. If det A  is small, then obtaining the sign of 
the determinant with lower precision can be done by effective algebraic methods of Section 4. Although, the 
Chinese remainder algorithm approach requires low precision computations provided that the determinant is 
bounded from above by a fixed large number. This motivated us to generalize to the case of any input matrix A 
and to decrease the precision at the final stage of the Chinese remaindering at the price of a minimal increase in 
the arithmetic cost. Furthermore, in Section 5 we extend the work to an algorithm that computes ( )det modA M  
using low precision by relying on the p-adic lifting rather than the Chinese remaindering.  

2. Definitions, Basic Facts, and Matrix Norms  
Definition 1. For an n × n matrix A, the determinant of A is given by either 

( ) ( ) ( )1det 1 det , for 1, , ,i jn
ij ijjA A a A i n+

=
= = − =∑   or ( ) ( ) ( )1det 1 det , for 1, , ,i jn

ij ijiA A a A j n+

=
= = − =∑    

where ijA  is ( )1n − -by- ( )1n −  matrix obtained by deleting the i-th row and j-th column of A.  
Fact 1. Well-known properties of the determinant include ( ) ( ) ( )det det detAB A B= , ( ) ( )Tdet detA A= , 

and ( ) ( )det detncA c A=  for any two matrices , n nA B ×∈  and c∈ .  
Definition 2. If A is a triangular matrix of order n, then its determinant is the product of the entries on the 

main diagonal.  
Definition 3. For a matrix A of size m × n, we define 1-norm: 1 11 max m

j n ijiA a≤ ≤ =
= ∑ , ∞ -norm:  

1 1max n
i m ijjA a≤ ≤ =∞

= ∑ , p-norms: 0 0 1sup sup max
p

p
x x xp p

p p p

Ax xA A Ax
x x≠ ≠ =

 
 = = =
 
 

, and 2-norm: 

2

2
02

2

= max x

Ax
A

x≠ .  

3. Numerical Computations of Matrix Determinant  
We find the following factorizations of an n × n matrix A whose entries are either integer, real, or rational by 
Gaussian elimination.  

A LU=                                          (1) 

rA P LU=                                         (2) 

.r cA P LUP=                                        (3) 
We reduce A to its upper triangular form U. The matrix L is a unit lower triangular whose diagonal entries are 
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all 1 and the remaining entries of L can be filled with the negatives of the multiples used in the elementary oper-
ations. Pr is a permutation matrix results from row interchange and Pc is a permutation matrix results from col-
umn interchange.  

Fact 2. If P is a permutation matrix, then det 1P = ± . Moreover, det 1I = , where I is an identity matrix.  

3.1. Triangular Factorizations  
The following algorithm computes ( )det A  or its sign based on the factorizations (1)-(3). 

Algorithm 1. Triangular factorizations. 
Input: An n × n matrix A. 
Output: ( )det A . 
Computations:  
1) Compute the matrices L, U satisfying Equation (1), or Pr, L, U satisfying Equation (2), or Pr, L, U, Pc 

satisfying Equation (3).  
2) Compute det L , detU  for Equation (1), or det rP , det L , detU  for Equation (2), or det rP , det L , 

detU , det cP  for Equation (3).  
3) Compute and output ( )( )det det detA L U=  for Equation (1), or ( )( )( )det det det detrA P L U=  for Eq-

uation (2), or ( ) ( )( )( )( )det det det det detr cA P L U P=  for Equation (3).  
One can easily output the sign of det A  from the above algorithm. We only need to compute the sign of 

det rP , det L , detU , and det cP  at stage 2 and multiply these signs. The value of det rP  and det cP  can be 
easily found by tracking the number of row or column interchanges in Gaussian elimination process which will 
be either 1 or −1 since those are permutation matrices. As L is a unit lower triangular matrix, det 1L = . Finally, 
the computations of detU  required 1n −  multiplications since U is an upper triangular matrix. Therefore, the 
overall arithmetic operations of Algorithm 1 will be dominated by the computational cost at stage 1, that is,  
( )( ) 1 2

1

1 2 1
6

n
i

n n n
i−

=

− −
=∑  multiplications, the same number for additions, subtractions, and comparisons, but 

( ) 1
1

1
2

n
i

n n
i−

=

−
=∑  divisions. However, Algorithm 1 uses 1

1
n
i i−

=∑  comparisons to compute (2) rather than 1 2
1

n
i i−

=∑ .  

3.2. Orthogonal Factorization  
Definition 4. A square matrix Q is called an orthogonal matrix if T .Q Q I=  Equivalently, 1 TQ Q− = , where 
QT is the transpose of Q.  

Lemma 1. If Q is an orthogonal matrix, then ( )det 1Q = ± .  
Proof. Since Q is orthogonal, then TQ Q I= . Now T 1Q Q I= =  and thus T 1Q Q = , but TQ Q=  

which implies that 21 Q Q Q= = , hence 1Q = ± .  
Definition 5. If m nA ×∈ , then there exists an orthogonal matrix m mQ ×∈  and an upper triangular matrix 

m nR ×∈  so that  
.A QR=                                          (4) 

Algorithm 2. QR-factorization. 
Input: An n × n matrix A. 
Output: ( )det A . 
Computations:  
1) Compute an orthogonal matrix Q satisfying the Equation (4).  
2) Compute det Q .  
3) Compute the matrix ( )T

,i jR Q A r= = .  
4) Compute ( ) ( ) ,det det i iiA Q r= ∏ , where ,i ir  are the main diagonal entries of R.  
Here, we consider two well-known effective algorithms for computing the QR  factorization; the House-

holder and the Given algorithms. The Householder transformation (or reflection) is a matrix of the form 
T2H I= − vv  where 

2 1=v .  
Lemma 2. H is symmetric and orthogonal. That is, TH H=  and T .H H I⋅ =   
Proof. T2 ,H I= − vv  and since TI I=  and ( )TT T ,=vv vv  then ( )TT T T T2 2 .H I I H= − = − =vv vv  Hence, 
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H is symmetric. On the other hand, ( )( ) ( )T T T T T T T T2 2 4 4 4 4 .H H I I I v I I= − − = − + = − + =vv vv vv v v v vv vv  
Therefore, H is orthogonal, that is, 1 TH H− = .  

The Householder algorithm computes 1n
iiQ H−=∏  as a product of 1n −  matrices of Householder trans-

formations, and the upper triangular matrix TQ A R= .  
Lemma 3. ( ) ( ) 1det 1 nQ −= −  for a matrix Q computed by the Householder algorithm.  
Proof. Since T2i i iH I= − v v  for vectors iv , 1, , 1i n= − , Lemma 2 implies that T

i iH H I=  and hence 
( )2det 1iH = . Notice that ( )T

1 1det 2 1I − = −e e  where ( )T
1 1,0, ,0e =  . Now for 0 1t≤ ≤ , we define the trans-  

formation ( ) ( )1 1iv t t v e e= − + . Then the function ( ) ( ) ( )( )TdetD t I v t v t= −  is continuous and 2 1D =  t∀ .  

Hence ( ) ( )T
1 11 det 2 1D I v v= − = −  since 

2 1=v  and ( ) ( )T
1 10 det 2 1D I e e= − = − . This proves that  

det 1iH = −  i∀ . But 1
1

n
iiQ H−

=
=∏ , we have ( ) 1det 1 nQ −= − .  

The Givens rotations can also be used to compute the QR factorization, where 1 tQ G G=  , t is the total 
number of rotations, Gj is the the j-th rotation matrix, and TQ A R=  is an upper triangular matrix. Since the 
Givens algorithm computes Q as a product of the matrices of Givens rotations, then ( )det 1Q = . We define 

( ) ( ), ,, ,i i k kG W c s W c s c= = = , , ,i k k iG W W s= = − =  for two fixed integers i and k, and for a pair of nonzero real 
numbers c and s that satisfies 2 2 1c s+ =  such that TG G I= . If the Householder is used to find the QR, Algo-  

rithm 2 uses 1n −  multiplications at stage 3. It involves ( )3 24
3

n O n+  multiplications at stage 1, and ( )O n   

evaluations of the square roots of positive numbers. If the Givens algorithm is used to find the QR, then it in-
volves ( )3 22n O n+  multiplications at stage 3, ( )3 2n O n+  multiplications at stage 1, and ( )2O n  evalua-
tions. This shows some advantage of the Householder over the Givens algorithm. However, the Givens rotations 
algorithm allows us to update the QR of A successively by using only ( )2O kn  arithmetic operations and 
square root evaluations if ( )O k  rows or columns of A are successively replaced by new ones. Therefore, in 
this case, the Givens algorithm is more effective.  

4. Algebraic Computations of Matrix Determinant  
4.1. Determinant Computation Based on the Chinese Remainder Theorem  
Theorem 1. (Chinese remainder theorem.) Let 1 2, , , km m m  be distinct pairwise relatively prime integers 
such that  

1 2 1.km m m> > > >                                    (5) 

Let 
1

k
iiM m

=
=∏ , and let D denote an integer satisfying the inequality  

0 .D M≤ <                                        (6) 
Let  

( )mod .i ir D m=                                      (7) 

( ) ( ), mod , 1 mod ,  1, , .i i i i i i i
i

MM s M m y s m i k
m

= ≡ ≡ ∀ =                     (8) 

Then D is a unique integer satisfying (6) and (7). In addition,  

( )( )
1

mod .
k

i i i
i

D M r y M
=

= ∑                                 (9) 

Algorithm 3. (Computation of ( )det mod A M  based on the Chinese remainder theorem.) 
Input: An integer matrix A, an algorithm that computes ( )det mod A m  for any fixed integer 1m > , k in-

tegers 1, , km m  satisfying (5) and are pairwise relatively prime, and 1 2 kM m m m=  . 
Output: ( )det mod A M . 
Computations:  
1) Compute ( )det mod i ir A m= , 1, ,i k=  .  
2) Compute the integers Mi, si, and yi as in (8)  1, ,i k∀ =  .  
3) Compute and output D as in (9).  
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The values of yi in (8) are computed by the Euclidean algorithm when applied to si and mi for 1, ,i k=  . 
Algorithm 3 uses ( )3O kn  arithmetic operations (ops) at stage 1, ( )( )1 1log log logO k m m  ops at stage 2, and 
( )2logO k k  ops at stage 3. The computations of the algorithm are performed with precision of at most 

2 1log m    bits at stage 1, and at most 2log M    bits at stages 2 and 3. The latest precision can be decreased at 
the cost of slightly increasing the arithmetic operations [8].  

Lemma 4. For any pair of integers M and d such that 2M d> , we have  

( ) ( ) ( ) mod  if   mod , and  mod  otherwise.
2
Md d M d M d d M M= < = −             (10) 

Suppose that the input matrix A is filled with integers and an upper bound detud A≥  is known. Then we 
may choose an integer M such that 2 uM d>  and compute ( )det mod A M . Hence, det A  can be recovered 
by using (10).  

4.2. Modular Determinant  
Let n nA ×∈  and ( )detd A= . In order to calculate ( )det mod A p , we choose a prime p that is bigger than 
2 d  and perform Gaussian elimination (2) on ( )mod n n

pA p ×∈ . This is the same as Gaussian elimination over 
 , except that when dividing by a pivot element a we have to calculate its inverse modulo p by the ex-  

tended Euclidean algorithm. This requires ( )3 22
3

n O n+  arithmetic operations modulo p. On the other hand, if  

we need to compute ( )det mod A p  for the updated matrix A, we rely on the QR factorization such that 
( )( )modA QR p=  and ( )T modQ Q D p= , where D is a diagonal matrix and R is a unit upper triangular matrix. 

The latest factorization can be computed by the Givens algorithm [9]. If the entries of the matrix A are much 
smaller than p, then we do not need to reduce modulo p the results at the initial steps of Gaussian elimination. 
That is, the computation can be performed in exact rational arithmetics using lower precision. In this case, one 
may apply the algorithm of [10] and [11] to keep the precision low. The computations modulo a fixed integer 

1M >  can be performed with precision 2log M    bits. In such a computation, we do not need to worry about 
the growth of the intermediate values anymore. However, to reduce the cost of the computations, one can work 
with small primes modular instead of a large prime, that is, these primes can be chosen very small with loga-
rithmic length. Then the resulting algorithm will have lower cost of ( )3O n k  and can be performed in parallel. 
Now, one can find a bound on the det A  without actually calculating the determinant. This bound is given by 
Hadamard’s inequality which says that  

( )2det ,
n nnA n a a n≤ =                                (11) 

where 1 ,max i j n ija a +
≤ ≤= ∈  (nonnegative integers) is the maximal absolute value of an entry of A.  

5. Alternative Approach for Computing Matrix Inverses and Determinant 
5.1. p-Adic Lifting of Matrix Inverses  
In this section, we present an alternative approach for computing matrix determinant to one we discussed in ear-
lier sections. The main goal is to decrease the precision of algebraic computations with no rounding errors. The 
technique relies on Newton’s-Hensel’s lifting (p-adic lifting) and uses ( )4 logO n n  arithmetic operations. 
However, we will also show how to modify this technique to use order of n3 arithmetic operations by employing 
the faster p-adic lifting. Given an initial approximation to the inverse, say S0, a well-known formula for New-
ton’s iteration rapidly improves the initial approximation to the inverse of a nonsingular n × n matrix A:  

( ) ( )1 2 2 2 , 0.i i i i i i i iS S I AS S S AS I S A S i+ = − = − = − ≥                    (12) 

Algorithm 4. (p-adic lifting of matrix inverses.) 
Input: An n × n matrix A, an integer 1p > , the matrix ( )1

0 mod S A p−= , and a natural number h. 
Output: The matrix ( )1 mod HA p− , 2hH = . 
Computations:  
1) Recursively compute the matrix jS  by the equation,  
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( )( )1 12 mod , where 2 , 1, , .J j
j j jS S I AS p J j h− −= − = = 

                   (13) 

2) Finally, outputs hS .  
Note that, ( )1 mod J

jS A p−= , 2 jJ = , j∀ . This follows from the equation ( ) ( )2
1 mod J

j jI AS I AS p−− = − . 
The above algorithm uses ( )3O n  arithmetic operations performed modulo pJ at the j-th stage, that is, a total of 
( )3O hn  arithmetic operations with precision of at most 2logJ p    bits.  

5.2. p-Adic Lifting of Matrix Determinant 
We can further extend p-adic lifting of matrix inverses to p-adic lifting of matrix determinants, that is 

( )det mod A p , using the following formula [12]:  

( )1

,1

1det .n

k k kk

A
A−

=

=

∏
                                   (14) 

Here, Ak denotes the k × k leading principal (north-western) submatrix of A so that nA A=  for 1, ,k n=  . 
Moreover, ( ) ,k kB  denotes the ( ),k k -th entry of a matrix B. In order to use Formula (14), we must have the 
inverses of Ak available modulo a fixed prime integer p for all k . A nonsingular matrix A modulo p is called 
strongly nonsingular if the inverses of all submatrices Ak exist modulo p. In general, a matrix A is called strongly 
nonsingular if A is nonsingular and all k × k leading principle submatrices are nonsingular. Here, we assume that 
A is strongly nonsingular for a choice of p. Finally, Algorithm 4 can be extended to lifting det A  (see Algo-
rithm 5).  

Algorithm 5. (p-adic lifting of matrix determinant.) 
Input: An integer 1p > , an n × n matrix A, the matrices ( )1

0, mod k kS A p−= , and a natural number h. 
Output: ( )2det mod HA p , 2hH = . 
Computations:  
1) Apply Algorithm 4 to all pairs of matrices kA  and 0,kS , (replacing the matrices A and 0S  in the algo-

rithm), so as to compute the matrices ( )1
, mod H

h k kS A p−= , for 1, ,k n=  .  
2) Compute the value  

( ) ( )2 2
, , ,1

1 mod 2 mod .
det

n
H H

h k k h k k kk
p S I A S p

A =

   = −    
∏                     (15) 

3) Compute and output the value ( )( )2det mod HA p , as the reciprocal of ( )21 mod 
det

Hp
A

 
 
 

.  

The overall computational cost of Algorithm 5 at stage 1 is ( )4O hn  arithmetic operations performed with 
precision at most 2logH p    bits. However, at stage 2, the algorithm uses ( )3O n  operations with precision 

22 logH p    bits. At stage 3, only one single multiplication is needed. All the above operations are calculated 
modulo p2H. Now, we will estimate the value of H and p that must satisfy the bound 2 2 detHp A> . But, due to  

Hadamard’s bound (11), we have ( ) ( ) 22 det 2
n HA a n p< <  which implies that  

2 log log log 2p p pH n a n n> + + . Therefore, it is suffices to choose p and H satisfying the inequalities  

( ) 22
n Ha n p<  and ( )2 log 2

n

pH a a >  
 

. In the next section, we will present an alternative faster tech-  

nique to computing matrix determinant that uses only ( )3O n  based on the divide-and-conquer algorithm.  

Example 1. Let 
1 17 18
1 18 19 .
5 16 20

A
 
 =  
 
 

 Then, [ ]1 1 ,A =  2

1 17
1 18

A  
=  
 

, and 3

1 17 18
1 18 19 .
5 16 20

A
 
 =  
 
 

 By Algorithm 4, 

compute the matrices: [ ]1
1 1 ,A− =  1

2

18 17
,

1 1
A− − 

=  − 
 and 1

3

56 52 1
75 70 1 .

74 69 1
A−

− 
 = − 
 − − 

 Now, we compute 
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[ ]1
0,1 1 mod 3 1 ,S A−= =  1

0,2 2

0 1
mod 3 ,

2 1
S A−  

= =  
 

 and 1
0,3 3

1 1 1
mod 3 0 1 1 .

2 0 2
S A−

 
 = =  
 
 

 We apply Algorithm 4 

(that is, ( )0, 0,2  mod , 2 , 1, ,J j
k k k kS S I A S p J j h= − = =  ) to all pairs of matrices:  

( ) [ ]2
1,1 1 0,1 1 0,12 mod 3 1 ,S S S I A S= = − =   

( ) 2
1,2 2 0,2 2 0,2

0 1
2 mod 3 ,

8 1
S S S I A S  

= = − =  
 

 

and 

( ) 2
1,3 3 0,3 3 0,3

7 7 1
2 mod 3 6 7 1 .

2 3 8
S S S I A S

 
 = = − =  
 
 

 

We then compute the value  

( ) ( ) ( )

[ ]

( )( )( )

32 2 2 1
1,1 1 1,1 1,2 2 1,2 1,3 3 1,31 1,1 2,2 3,3

1,1
2,2

3,3

1 mod 2 2 2 mod 3
det

2243 2783 2510
144 17

1 2100 2603 2348
1216 161

2113 2580 2269

1 161 2269 365309 mo

H
kp S I A S S I A S S I A S

A
× ×

=
     = − ⋅ − ⋅ −     

− − − 
− −   = ⋅ ⋅ − − −   − −   − − − 

= − − =

∏

( )d 81 80.=

 

Therefore, we output the value of ( ) 2 2 1det mod 3 1A × × = − , since 1 80 mod 81− ≡ .  

5.3. Faster p-Adic Lifting of the Determinant 
Assuming A is strongly nonsingular modulo p, block Gauss-Jordan elimination can be applied to the block 2 × 2 

matrix 
B C

A
E G

 
=  
 

 to obtain the well-known block factorization of A: 

1

1 ,
I O B O I B C

A
EB I O S O I

−

−

   
=    
   

 

where 1S G EB C−= −  is the Schur complement of B in A. The following is the divide-and-conquer algorithm 
for computing ( )det A .  

Algorithm 6. (Computing the determinant of a strongly nonsingular matrix.) 
Input: An n × n strongly nonsingular matrix A. 
Output: ( )det A . 
Computations:  

1) Partition A according to the block factorization above, where B is an 
2 2
n n   ×      

 matrix. ( ⋅    refers to 

the floor of 
2
n .) Compute 1B−  and S using the matrix equation 1S G EB C−= − .  

2) Compute ( )det B  and ( )det S .  
3) Compute and output ( ) ( )det det  detA B S= .  
Since A is strongly nonsingular modulo p, we can compute the inverse of k × k matrix by  
( ) ( )3 logO k H I k=  arithmetic operations using Algorithm 4. From the above factorization of A, we conclude 

that ( ) ( ) ( ) ( )2 2 2D n D n D n I n≤ + +           . The computational cost of computing the determinant is 
( ) ( )3 logD n O n H= . This can be derived from the above factorization of A using recursive factorization ap- 

plied to B and S and the inverses modulo 2Hp . Here, ( )I k  is the cost of computing the inverse and ( )D k  is 
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the cost of computing the determinant. 

6. Improving the Precision of the p-Adic Lifting Algorithm 
Definition 6. Let e be a fixed integer such that 2log e β>  where β is the computer precision. Then any integer 
z, such that 0 1z e≤ ≤ − , will fit the computer precision and will be called short integer or e-integer. The integ-
ers that exceed 1e α− =  will be called long integers and we will associate them with the e-polynomials 
( ) i

iip x p x=∑ , 0 ip e≤ <  for all i.  
Recall that Algorithm 4 uses 2logj p    bits at stage j. For large j, this value is going to exceed β. In this 

section we decrease the precision of the p-adic algorithm and keep it below β. In order to do this, we choose the 
base Ke p=  where K is a power of 2, 2K H≤ , K divides 2H , and  

2

2log .nHK
K

α β
 

≤ < 
 

                                   (16) 

Now, let us associate the entries of the matrices  mod J
kA p  and 1,  mod J

j kS p−  with the e-polynomials in x 
for = 2 jJ  and for all j and k. These polynomials have degrees ( ) 1J K −  and take values of the entries for 
x e= . Define the polynomial matrices ( ),  mod J

j k kA e A p=  and ( ), ,  mod J
j k j kS e S p= . Then for J K≥ , we 

associate the p-adic lifting step of (13) with the matrix polynomial  

( ) ( ) ( ) ( ) ( )( ), 1, 1, , 1,2 mod .J K
j k j n j n j n j nS x S x S x A x S x x− − −= −                    (17) 

The input polynomial matrices are ( )1,j nS x−  and ( ),j nA x  for 1, 2, ,j h=  . We perform the computations 
in (17) modulo J Kx . The idea here is to apply e-reduction to all the entries of the output matrix polynomial 
followed by a new reduction modulo J Kx . The resulting entries are just polynomials with integer coefficients 
ranging between 1 e−  and 1e − . This is due to the recursive e-reductions and then taking modular reductions 
again. Note that the output entries are polynomials with coefficients in the range γ−  to γ  for 2βγ ≤  even 
before applying the e-reductions. This shows that the β-bit precision is sufficient in all of the computations due 
to (16). The same argument can be applied to the matrices ,j kS  for all j and k n< . 

7. Numerical Implementation of Matrix Determinant  
In this section we show numerical implementation of the determinant of n × n matrices based on the triangular 
factorization LU, PrLU, and PrLUPc. Algorithm 1 computes the triangular matrices LL L E= +  and  

UU U E= + , the permutation matrices rP  and cP , where EL and EU are the perturbations of L and U. In gener-
al, we can assume that r rP P=  and c cP P=  since the rounding error is small.  

Definition 7. Let  
1 1, ,r cA P AP LU A E− −′ ′ ′= − =                                   (18) 

and let e′ , a, l , and u  denote the maximum absolute value of the entries of the matrices E′ , A, L , and 
U . Also, E′  is the error matrix of the order of the roundoff in the entries of A.  

Assuming floating point arithmetic with double precision (64-bits) and round to β -bit. Then the upper 
bound on the magnitude of the relative rounding errors is 2 β−= , where   is the machine epsilon. Our goal is 
to estimate e′ .  

Theorem 2. ([13]) For a matrix ( ),i jA a= , let A  denote the matrix ( ),i ja . Then under (18),  
( ) ,E A L U′ ′≤ +     and  

( ) .e e a nlu+′ ≤ = + 

                                    (19) 

From the following matrix norm property , ,
1 maxi j i jq qA a A
n

  ≤ ≤ 
 

, for 1, 2,q = ∞ , we obtain the bound 

.e E
∞

′ ′≤   
Theorem 3. Let a+  denotes the maximum absolute value of all entries of the matrices ( )iA  computed by 

Gaussian elimination, which reduces A′  to the upper triangular form and let   as defined above. Then  
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( )22 42 1.8 .
ln

e e E n a an
++

+ ∞
′ ′≤ = ≤ <                             (20) 

By using the following results, we can estimate the magnitude of the perturbation of det A  and det A′  
caused by the perturbation of A′ . Here we assume that ,r cP P I A A′= = =  and write,  

( ),  det det .de e e A E A′= = + −                               (21) 

We use the following facts to estimate de  of (21) in Lemma 5 below.  
Fact 3. det n

qA A≤ , 1,2,q = ∞ . 
q qB A≤ , 1,q = ∞ , if B A≤ ; 

q qB A≤ , 1,2,q = ∞ , if B is a  
submatrix of A. 

q qA E A ne+ ≤ + , for 1,2,q = ∞ ; 2 2

2 2A E A ne+ ≤ + .  

Lemma 5. ( ) 1
2 , for 1, 2, .

n

d qe A ne n e q
−

≤ + = ∞   

Combining Lemma 5 with the bound (19) enables us to extend Algorithm 1 as follows:  
Algorithm 7. (Bounding determinant.) 
Input: An n n×  real matrix A and a positive  . 
Output: A pair of real numbers d−  and d+  such that det .d A d− +≤ ≤  
Computations:  
1) Apply Algorithm 1 in floating point arithmetic with unit roundoff bounded by  . Let UU U E= +  denote 

the computed upper triangular matrix, approximating the factor U of A from (2) or (3). 
2) Compute the upper bound e+  of (20) where e e′= .  

3) Substitute e+ for e and ( )
1
2

1 1min | , , A A A A
∞ ∞

 
 
 

 for 
qA  in Lemma 5 and obtain an upper bound 

de+  on de .  
4) Output the values det dd U e+

− = −  and det dd U e+
+ = + .  

Example 2. Let 

5 310
3 6 0 1.6667 5.1667

19 3 16 4.7500 1.5000 3.2000 .
4 2 5

3.4000 5.2500 1.333317 21 12
5 4 9

A

 − 
−  

  = ≈   
    

  
 

 Using Matlab, Gaussian elimination 

with complete pivoting gives the matrix U rounded to 4 bits: 
5.2500 1.3333 3.4000

0 5.5899 1.0794
0 0 3.2342

U
 
 = − − 
 
 

,  

1 0 0
0.3175 1 0
0.2857 0.5043 1

L
 
 =  
 − 

, UU U E= + , LL L E= +  where EU and EL are the matrices obtained from accu-

mulation of rounding errors. Also 
0 0 1
1 0 0
0 1 0

rP
 
 =  
 
 

, and 
0 0 1
1 0 0 .
0 1 0

cP
 
 =  
 
 

 Then 

5 5

5

0 6 10 6 10
0 0 0
0 0 3 10

AE

− −

′
−

 × ×
 

=  
 × 

  

is a perturbation in A, and 41.2 10AE −
′ ∞

= × . We now compute the upper bound e+  of (20). Therefore, 
62.9618e e+′ ≤ ≤ , where 5.25a =  is the maximum of ,i ja  of A, l = 1 is the maximum of ,i jl  of L, 2 β−= , 

4β = , and 3n =  is the size of the input matrix A . Hence we obtain the following upper bound de+  on de   

by Lemma 5. That is, ( )
11

2 72
1 1min , , 2.2347 10

n

de A A A A ne n e
−

+ +∞ ∞

  
≤ + = ×     

, where 
1 9.7A = ,  

9.9833A
∞
= , and 1 9.8406A A

∞
= . Hence, 72.2347 10de+ = ×  is an upper bound of de .  

7det 2.2347 10dd U e+
− = − = − ×  and 7det 2.2347 10dd U e+

+ = + = × . Since ( )det 94.91597A = − , we have 
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( )det detd dU e A U e+ +− ≤ ≤ +  . On the other hand ( ) ( )det det 0.00123de A EA A= + − =  which is less than the 
upper bound 72.2347 10×  we have computed.  
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Abstract 
This paper deals with the construction of Heun’s method of random initial value problems. Suffi-
cient conditions for their mean square convergence are established. Main statistical properties of 
the approximations processes are computed in several illustrative examples. 

 
Keywords 
Stochastic Partial Differential Equations, Mean Square Sense, Second Order Random Variable,  
Finite Difference Scheme 

 
 

1. Introduction 
Random differential equation (RDE), is an ordinary differential equation (ODE) with random inputs that can 
model unpredictable real-life behavior of any continuous system and they are important tools in modeling com-
plex phenomena. They arise in many physics and engineering applications such as wave propagation, diffusion 
through heterogeneous random media. Additional examples can be found in materials science, chemistry, biol-
ogy, and other areas. However, reaching a solution of these equations in a closed form is not always possible or 
even easy. Due to the complex nature of RDEs, numerical simulations play an important role in studying this 
class of DEs. For this reason, few numerical and analytical methods have been developed for simulating RDEs. 
Random solutions are always studied in terms of their statistical measures. 

This paper is interested in studying the following random differential initial value problem (RIVP) of the 
form: 

( ) ( )( ) ( )0 0

d
, , .

d
X t

f t X t X t X
t

= =                              (1) 

http://www.scirp.org/journal/ajcm
http://dx.doi.org/10.4236/ajcm.2014.45040
http://dx.doi.org/10.4236/ajcm.2014.45040
http://www.scirp.org/
mailto:m_stat2000@yahoo.com
http://creativecommons.org/licenses/by/4.0/
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Randomness may exist in the initial value or in the differential operator or both. In [1] [2], the authors dis-
cussed the general order conditions and a global convergence proof was given for stochastic Runge-Kutta me-
thods applied to stochastic ordinary differential equations (SODEs) of Stratonovich type. In [3] [4], the authors 
discussed the random Euler method and the conditions for the mean square convergence of this problem. In [5], 
the authors considered a very simple adaptive algorithm, based on controlling only the drift component of a time 
step but if the drift was not linearly bounded, then explicit fixed time step approximations, such as the Euler- 
Maruyama scheme, may fail to be ergodic. Platen, E. [6] discussed discrete time strong and weak approximation 
methods that were suitable for different applications. [12] discussed the mean square convergent Euler and 
Runge Kutta methods for random initial value problem. Other numerical methods are discussed in [7]-[12]. 

In this paper the random Heun’s method is used to obtain an approximate solution for Equation (1). This pa-
per is organized as follows. In Section 2, some important preliminaries are discussed. In Section 3, random dif-
ferential equations are discussed. In Section 4, the convergence of random Heun’s method is discussed. Section 
5 presents the solution of numerical example of first order random differential equation using random Heun’s 
method showing the convergence of the numerical solutions to the exact ones (if possible). The general conclu-
sions are presented in Section 6.  

2. Preliminaries 
Definition 1 [13]. Let us consider the properties of a class of real r.v.’s 1 2, , , nX X X  whose second moments, 
{ } { }2 2

1 2, ,E X E X   are finite. In this case, they are called “second order random variables”, (2.r.v’s). 

The Convergence in Mean Square [13] 

A sequence of r.v’s { }nX  converges in mean square (m.s) to a random variable X if: lim 0nn
X X

→∞
− =  i.e. 

m.s
nX X→  or lim nn

X X
→∞

=  where l.i.m is the limit in mean square sense. 

3. Random Initial Value Problem (RIVP) 
If we have the random differential equation 

( ) ( )( ) [ ] ( )0 1 0 0, , , ,X t f X t t t T t t X t X= ∈ = =                        (2) 

where X0 is a random variable, and the unknown ( )X t  as well as the right-hand side ( ),f X t  are stochastic 
processes defined on the same probability space ( ), ,F PΩ , are powerful tools to model real problems with un-
certainty.  

Definition 2 [6] [7]. 
• Let 2:g T L→  is an m.s. bounded function and let 0h >  then The “m.s. modulus of continuity of g” is 

the function 

( ) ( ) ( )
*

* *, sup , , .
t t h

W g h g t g t t t T
− ≤

= − ∈  

• The function g is said to be m.s. uniformly continuous in T if:  

( )
0

lim , 0.
h

W g h
→

=  

Note that: (The limit depend on h because g is defined at every t so we can write ( ) ( ),W g h W h= ). 
In the problem (2) that we discusses we find that the convergence of this problem is depend on the right hand 

side (i.e. ( )( ),f X t t ) then we want to apply the previous definition on ( )( ),f X t t  hence: 
Let ( )( ),f X t t  be defined on S × T where S is bounded set in L2 Then we say that f is “randomly bounded  

uniformly continuous” in S, if ( )( )
0

lim ,. , 0
h

W f x h
→

=  (note that: ( )( )( ) ( ). ,W f X h W h= ). 

A Random Mean Value Theorem for Stochastic Processes 
The aim of this section is to establish a relationship between the increment ( ) ( )0X t X t−  of a 2-s.p. and its m.s. 
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derivative ( )X ξ  for some ξ  lying in the interval [ ]0 ,t t  for 0t t> . This result will be used in the next 
section to prove the convergence of the random Heun’s method discussed. 

Lemma (3.2) [6] [7].  
Let ( )Y t  is a 2-s.p., m.s. continuous on interval [ ]0 1,T t t= . Then, there exists [ ]0 1,t tξ ∈  such that:  

( ) ( )( )
0

0 0 1d , .
t

t
Y s s Y t t t t tξ= − < <∫                             (3) 

Theorem (3.3) [6] [7]. 
Let ( )X s  be a m.s. differentiable 2-s.p. in ] [0 1,t t  and m.s. continuous in [ ]0 1,T t t= . Then, there exists 
[ ]0 1,t tξ ∈  such that:  

( ) ( ) ( )( )0 0 .X t X t X t tξ− = −  

4. The Convergence of Random Heun’s Scheme 
In this section we are interested in the mean square convergence, in the fixed station sense, of the random 
Heun’s method defined by: 

( ) ( )( ) ( )1 1 0 0, , , , , 0
2n n n n n n n n
hX X f X t f X hf X t t X t X n+ + = + + + = ≥               (4) 

where nX  and ( ),n nf X t  are 2-r.v.’s, 1n nh t t −= − , 0nt t nh= +  and 2:f S T L× → , 2S L⊂  satisfies the 
following conditions: 

C1: ( ),f X t  is randomly bounded uniformly continuous. 
C2: ( ),f X t  satisfies the m.s. Lipschitz condition: 

( ) ( ) ( ) ( )1

0
, , where : .

t

t
f x t f y t k t x y k t− ≤ − ≤ ∞∫                      (5) 

Note that under hypothesis C1 and C2, we are interested in the m.s. convergence to zero of the error:  

( )n ne X X t= −                                     (6) 

where ( )X t  is the theoretical solution 2-s.p. of the problem (2), 0nt t t nh= = + . 
Taking into account (2), and Th (3.3), one gets, since from (2) we have at t tξ=  then: ( ) ( )( ),X t f x t tξ ξ ξ= . 

(Note: [ ]0 1,t tξ ∈  and we can use ξ  instead of tξ .) 
And from Th (3.3) at t tξ=  then we obtain: 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )0 0 0 0, .X t X t X t t t X t X t f X t t t tξ ξ ξ ξ ξ ξ− = − ⇒ − = −  

Note that we deal with the interval ( )1,n nt t +  ( )1,n nt t tξ +∋ ∈  and hence 0t  was the starting in the problem 
(2) and here nt  is the starting and since Heun’s method deal with solution depend on previous solution and if 
we have ( )nX t  instead of ( )0X t  then we can use ( )1nX t +  instead of ( )X tξ  hence the final form of the 
problem (2) is:  

( ) ( ) ( )( ) ( )1 1, , for some , .n n n nX t X t hf X t t t t tξ ξ ξ+ += + ∈                     (7) 

Now we have the solution of problem (2) is: ( ).nX t  
At nt t=  then ( ) ( )nX t X t=  and the solution of Heun’s method (4) is: .nX  
Then we can define the error:  

( ).n ne X X t= −  

By (4) and (7) it follows that: 

( ) ( ) ( )( )

( ) ( )( ) ( )( )
1 1 1 1, , ,

2

, , .
2 2

n n n n n n n n n n

n

he X X t X f X t f X hf X t t

h hX t f X t t f X t tξ ξ ξ ξ

+ + + + = − = + + + 

− − −
 

Then we obtain:  
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( ) ( ) ( )( ){ } ( )( ) ( )( ){ }1 1, , , , , .
2 2n n n n n n n n n
h he X X t f X t f X t t f X hf X t t f X t tξ ξ ξ ξ+ += − + − + + −  

By taking the norm for the two sides: 

( ) ( ) ( )( ){ } ( )( ) ( )( ){ }
( ) ( )( ) ( ) ( )( ) ( )( )

1 1

1

, , , , ,
2 2

, , , , , .
2 2

n n n n n n n n n

n n n n n n n n

h he X X t f X t f X t t f X hf X t t f X t t

h hX X t f X t t f X t f X hf X t t f X t t

ξ ξ ξ ξ

ξ ξ ξ ξ

+ +

+

= − + − + + −

≤ − + − + + −

   (8) 

Since: 

( )( ) ( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )

, ,

, , , , , ,

, , , , , , .

n n

n n n n n n n n

n n n n n n n n

f X t t f X t

f X t t f X t t f X t t f X t t f X t t f X t

f X t t f X t t f X t t f X t t f X t t f X t

ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

−

= − + + − −

≤ − + − + −

     (9) 

Since the theoretical solution ( )X t  is m.s. bounded in [ ]0 1,t t , ( )
0 1

sup
t t t

X t M
≤ ≤

≤ < ∞  and under hypothesis 

C1, C2, we have: 

• ( )( ) ( )( ) ( ), , .nf X t t f X t t w hξ ξ ξ− =  

• ( )( ) ( )( ) ( ), ,n n n nf X t t f X t t k t Mhξ − ≤                                                  (10) 

where ( )nk t  is Lipschitz constant (from C2) and: 
From Th (3.3) we have ( ) ( ) ( )( )0 0X t X t X t tξ− = −  and note that the two points are ( )X tξ  and ( )nX t  

in (10) then: 

( ) ( ) ( )n nX t X t X t t Mhξ ξξ− = − ≤   

where: nt t hξ − =  and ( )
0 1

sup .
t t t

M X t
≤ ≤

=   

• ( )( ) ( ) ( ) ( ) ( ), , .n n n n n n n n nf X t t f X t k t X t X k t e− ≤ − =  

Then by substituting in (9) we have: 

( )( ) ( ) ( ) ( ) ( ), , .n n n n nf X t t f X t w h k t Mh k t eξ ξ − ≤ + +                    (11) 

And another term: 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

( ) ( ) ( )

1 1

1 1 1

1 1

1 1 1

1 1

1 1

, , , , , ,

, , , ,

, , ,

, , , ,

, , ,

n n n n n n n n

n n n n

n n n n n n

n n n n

n n n n n n

n n n

f X hf X t t f X t t f X t t f X hf X t t

f X t t f X t t f X t t f X t t

f X t t f X hf X t t

f X t t f X t t f X t t f X t t

f X t t f X hf X t t

w h k t Mh k t e h

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

+ +

+ + +

+ +

+ + +

+ +

+ +

+ − = − +

= − + +

− − +

≤ − + −

+ − +

≤ + + − .M  

 

Since: 

• ( )( ) ( )( ) ( )1, , .nf X t t f X t t w hξ ξ ξ +− ≤  

• ( )( ) ( )( ) ( )1 1 1, ,n n n nf X t t f X t t k t Mhξ + + +− ≤  
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where ( )nk t  is Lipschitz constant (from C2) and: 
From Th (3.3) we have ( ) ( ) ( )( )0 0X t X t X t tξ− = −  and note that the two points are ( )X tξ  and ( )nX t  

in (10) then we have:  

( ) ( ) ( )n nX t X t X t t Mhξ ξξ− = − ≤  

where nt t hξ − =  and ( )
0 1

sup .
t t t

M X t
≤ ≤

=   

And the last term: 

( )( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 1

1 1

, , , ,

, .

n n n n n n n n n n n

n n n n n n n

f X t t f X hf X t t k t X t X hf X t

k t X t X hf X t k t e hM

+ + +

+ +

− + ≤ − −

   ≤ − − = −  
 

Then by substituting in (8) we have: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1

1 1 1

1 1 1

1

2 2

1 2
2 2

1 2
2 2

1
2

n n n n n n n n

n n n n n n

n n n n n n

n n

h he e w h k t Mh k t e w h k t Mh k t e hM

h he k t k t w h hk t M hk t M K t hM

h he k t k t w h hk t M hk t M K t hM

h k t k t

+ + +

+ + +

− − −

+

    ≤ + + + + + + −    

   = + + + + + −    
    ≤ + + + + + −      
  × + +  
  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1 1 1

1 1 1

2 2 1 2

2
2

1 1 2
2 2 2

1 2
2 2

1 2
2 2

n n n

n n n n n n n n

n n n n n

n n n n

h w h hk t M hk t M K t hM

h h he k t k t k t k t w h hk t M hk t M K t hM

h hk t k t w h hk t M hk t M K t hM

h he k t k t w h hk t M hk

+ +

− − + −

+ + +

− − − −

 + + + − 

    = + + + + + + + −      
   × + + + + + −    

 ≤ + + + + + 
 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

1 1 1

2 2 1 1 1

1 2
2 2

1 2
2 2

1 1 1
2 2 2

2
2

n n

n n n n n

n n n n n

n n n n n n n

t M K t hM

h hk t k t w h hk t M hk t M K t hM

h hk t k t w h hk t M hk t M K t hM

h h he k t k t k t k t k t k t

h w

− −

− −

+ + +

− − − − +

 
 −   

 
   × + + + + + −     

   × + + + + + −    
   = + + + + + +   
   

+ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 1 1 1 1

1 1

1 1

3 3 2 3 2

1 1
2 2

2 1
2 2

2
2

1 2
2 2

n n n n n n n

n n n n n

n n n

n n n n n n

h hh hk t M hk t M K t hM k t k t k t k t

h hw h hk t M hk t M K t hM k t k t

h w h hk t M hk t M K t hM

h he k t k t w h hk t M hk t M K t

− − − − +

− +

+ +

− − − − −

   + + − + + + +      
  + + + − + +    

 + + + − 

 ≤ + + + + + − 
 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

2 1 2 1 1

1 1

1 2
2 2

1 2
2 2

n n n n n

n n n n n

hM

h hk t k t w h hk t M hk t M K t hM

h hk t k t w h hk t M hk t M K t hM

−

− − − − −

− −

 
       

   × + + + + + −     
   × + + + + + −     
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

3 3 2 2 1 1 1

2 1 1 2 1

1 2
2 2

1 1 1 1
2 2 2 2

2 1
2 2

1
2

n n n n n

n n n n n n n n n

n n n n n

n

h hk t k t w h hk t M hk t M K t hM

h h h he k t k t k t k t k t k t k t k t

h hw h hk t M hk t M K t hM k t k t

h k t

+ + +

− − − − − − +

− − − − −

   × + + + + + −    
    = + + + + + + + +    
    

  + + + − + +    

× + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1 1

1 1

1 2
2 2

1 1 2
2 2 2

1 2 .
2 2

n n n n n n

n n n n n n n

n n n n n

h hk t k t k t w h hk t M hk t M K t hM

h h hk t k t k t k t w h hk t M hk t M K t hM

h hk t k t w h hk t M hk t M K t hM

− + −

− + + +

+ −

    + + + + + + −      
    × + + + + + + + −      
   × + + + + + −    

 

Finally, we have: 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( )

1 0 0 1 1 2 2 3

1 1 2 1 1

1 2 2 3

1 1 1
2 2 2

1 1 2
2 2 2

1 1
2 2

n n n n n n n n n n n

n n n n n n n

n n n n n n n n

h h he e k t k t k t k t k t k t

h h hk t k t k t k t w h hk t M hk t M K t hM

h hk t k t k t k t

+ − − − − − − − − − −

− + − − −

− − − − − − − −

   ≤ + + + + + +   
   

    × + + + + + + + −      
 × + + + + 
 



( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )

( ) ( )

1

1 2 1 1 1

1 12 3

1

1
2

1 1 1 1
2 2 2 2

2 1 1
2 2 2

1 1
2

n n

n n n n n n n n

n n n n nn n n n

n n

h k t k t

h h h hk t k t k t k t k t k t k t k t

h h hw h hk t M hk t M K t hM k t k t k t k t

h hk t k t

−

+ − − − +

− −− − − −

+

  + +  
  

    × + + + + + + + +    
    

    + + + − + + + +        
 × + + + 
 





( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

2 1 1 1

1 1 1

1

0 2 1 11
0

1 1
2 2 2

2 1
2 2

2
2

1 2
2 2

n n n n n n

n n n n n

n n n

n

n i n n nn i
i

h hk t k t k t k t k t k t

h hw h hk t M hk t M K t hM k t k t

h w h hk t M hk t M K t hM

h he k t k t w h hk t M hk t M K t hM

− − − +

+ + +

−

− − − −− −
=

   + + + + + +   
   

  + + + − + +    

 + + + − 

 = + + + + + − 
 

∏



( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

1

11
0

2

1 11
0

1 1

0 1

1 2
2 2

1 2
2 2

1 2
2 2

1
2

n

n i n n nn i
i

n

n i n n nn i
i

n n n n n

n i n i

h hk t k t w h hk t M hk t M K t hM

h hk t k t w h hk t M hk t M K t hM

h hk t k t w h hk t M hk t M K t hM

he k t k t

−

− −− −
=

−

− + +− −
=

+ −

− − −

  

   × + + + + + −    
   × + + + + + + −    

   × + + + + + −    

= + +

∏

∏ 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )

2 1 1
0

1 2

11 1
0 0

2
2

1 1 1 1 .
2 2 2

n

n n n
i

n n

n i n i n nn i n i
i i

h w h hk t M hk t M K t hM

h h hk t k t k t k t k t k t

− − −
=

− −

− − +− − − −
= =

   + + + −    
      × + + + + + + + + + +            

∏

∏ ∏ 

 

Taking into account that 0 0e =  where ( )0 0 0 0e X X t= − =  and by taking the limit as:  
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0h →  then we have: 10
lim 0nh

e +→
→  

i.e. { }ne  converge in m.s. to zero as: 0h →  hence ( ) ( )m.s .n nX X t X t→ =  

5. Case Study 
Example: Solve the problem 

d
d
N N
t

α= , ( )0 1000N = , [ ]0,1t∈ , ~ random variable.α  

The theoretical solution is: 

( ) 0.51000e .N t α=  

The approximations: 
 

( )~ Binomial 5,0.2α  

h (step size) [ ]E y  for the exact 
solution 

[ ]nE y  for Heun’s 
method 

Error on Heun’s Error on Euler [12] Error on Runge  
Kutta [12] 

0.25 1318.179242 1306.250000 11.929242 68.179242 156.820758 

0.125 1140.431227 1128.515625 1.368727 15.431227 97.068773 

0.025  1025.572765 1025.562500 0.010265 0.572765 21.927235 

0.0025 1002.505635 1002.505625 0.000010 0.005635 2.244365 

( )~ Erlang 0.5,2α  

0.25 1306.122449 1296.875000 9.247449 56.122449 131.377551 

0.125 1137.777778 1136.718750 1.059028 12.777778 80.972222 

0.025  1025.572765 1025.468750 0.007936 0.476686 18.273314 

0.0025 1002.505635 1002.504688 0.000007 0.004695 1.870305 

( )~ Poisson 2α  

0.25 1764.823762 1687.500000 77.323762 264.823762 485.176238 

0.125 1305.122500 1296.875000 8.247500 55.122500 319.877500 

0.025  1051.933860 1051.875000 0.058860 1.933860 73.066140 

0.0025 1005.018808 1005.018750 0.000058 0.018808 7.481192 

 
In this results showed in the table we have the Heun’s method gave better approximation as: 0h →  than 

Euler and Rung-Kutta [12] for solving random variable, ınitial value problems. 

6. Conclusion  
The initially valued first order random differential equations can be solved numerically using the random Heun’s 
methods in mean square sense. The convergence of the presented numerical techniques has been proven in mean 
square sense. The results of the paper have been illustrated through an example. 
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