

Announcement:

Special Issue of Journal of Software

Engineering and Applications

It is our great pleasure to announce that all papers published in this issue are recommended by

the Organization Committee of the 2nd International Workshop on Requirements Analysis (IWRA)

2010-held at Middlesex University, London, UK.

We hope this special issue can attract more scholars to submit their research papers to JSEA,

the journal that publishes the good quality research and review articles in all important aspects of

software engineering and applications.

JSEA Editorial Office

From the Special Issue Editors

Requirements Analysis: Where Theory Meets Practice

More than 70% of the IT projects in the UK fail every year and over 80% of them fail in the requirements
analysis phase. Poor project management, bad organisational politics, false business priorities, lack of com-
mitment and other issues can also cause a project to fail. Patterns of software systems failures and their study
have resulted in the development of numerous models, methodologies and frameworks, yet project and sys-
tem failures persist. Requirements understanding, analysis and specification have emerged as critical areas in
software and systems engineering. More recent developments have indicated the shift from the technical
view to the human factor embodied strongly in the agile movement. The papers were presented at the Inter-
national Workshop for Requirements Analysis (IWRA2010) which focussed on concepts, ontologies, models,
methods and techniques such as methods for eliciting, analysing and measuring requirements. The papers in
this issue come from both academia and industry where theory is applied to case studies such as Service Pro-
visioning for the Greek Banking Sector, home care systems and Aeronautics.

Tom Gilb distills 40 years’ contribution to Software Engineering research and practice (including Soft-
ware metrics, the EVO methodlogy and Planguage) in his keynote address provides an analysis of the fun-
damental failings of conventional thinking about software requirements, and proposed suggestions ‘for get-
ting it right’.

Professor Stamper known for his pioneering work in Organisational semiotics, and the creation of the
MEASUR methodology shares his reflections on Ontologies.

Professor White provides a Review of the Impact of Requirements on Software Project Development us-
ing a Control Theoretic Model and scientists from China and Finland explore Model-Driven Derivation of
Domain Functional Requirements from Use Cases. As Software Engineering is these days preoccupied with a
paradigm shift to Agility Methods, agility could not be absent from such a workshop.

The papers in this issue have been contributed by academics and practitioners from several countries and
domains. They explore current practices for process modelling and process improvement, examine the ap-
plicability of theoretical models and frameworks to practical problems, analyse the complexity in systems
and organisations, address current issues through the use of formal, semi-formal and informal methods and
above all promote the integration of theory and practice, identify trends and indicate avenues of further work.

Dedication: The IWRA210 and this special issue of JSEA are dedicated to the memory of Dr Manos Nista-
zakis who was a co-chair and the main driving force for organising and hosting the workshop at Middlesex
University. He sadly died of natural causes suddenly aged 39 in May.

J. Software Engineering & Applications, 2010, 3, 827-900
Published Online September 2010 in SciRes (http://www.SciRP.org/journal/jsea/)

Copyright © 2010 SciRes. JSEA

TABLE OF CONTENTS

Volume 3 Number 9 September 2010

What’s Wrong with Requirements Specification? An Analysis of the Fundamental Failings of Conventional

Thinking about Software Requirements, and Some Suggestions for Getting it Right

T. Gilb………827

Benefits Management Process Complements Other Project Management Methodologies

I. Karamitsos, C. Apostolopoulos, M. A. Bugami…………………………………………………………………………………839

Requirements Analysis and Traceability at CIM Level

M. Yamin, V. Zuna, M. A. Bugami……………………………………………………………………………………………845

A Review of the Impact of Requirements on Software Project Development Using a Control

Theoretic Model

A. White……852

IT Project Environment Factors Affecting Requirements Analysis in Service Provisioning for

the Greek Banking Sector

K. Maroukian……858

Requirements Analysis: Evaluating KAOS Models

F. Almisned, J. Keppens……869

Model-Driven Derivation of Domain Functional Requirements from Use Cases

J. M. Guo, Z. Y. Zhang, Y. L. Wang……………………………………………………………………………………………875

Towards Lightweight Requirements Documentation

Z. Y. Zhang, M. Arvela, E. Berki, M. Muhonen, J. Nummenmaa, T. Poranen…………………………………………………882

Investigating the Suitability of Agile Methods for Requirements Development of Home Care Systems

S. Kelly, F. Keenan……890

Introduction to a Requirements Engineering Framework for Aeronautics

R. Abo………894

Journal of Software Engineering and Applications (JSEA)

Journal Information

SUBSCRIPTIONS

The Journal of Software Engineering and Applications (Online at Scientific Research Publishing, www.SciRP.org) is published

monthly by Scientific Research Publishing, Inc., USA.

Subscription rates:
Print: $50 per issue.

To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org

SERVICES

Advertisements

Advertisement Sales Department, E-mail: service@scirp.org

Reprints (minimum quantity 100 copies)

Reprints Co-ordinator, Scientific Research Publishing, Inc., USA.

E-mail: sub@scirp.org

COPYRIGHT

Copyright©2010 Scientific Research Publishing, Inc.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without the

permission in writing of the Publisher.

Copying of articles is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under

the terms of a license issued by the national Reproduction Rights Organization.

Requests for permission for other kinds of copying, such as copying for general distribution, for advertising or promotional purposes,

for creating new collective works or for resale, and other enquiries should be addressed to the Publisher.

Statements and opinions expressed in the articles and communications are those of the individual contributors and not the statements

and opinion of Scientific Research Publishing, Inc. We assumes no responsibility or liability for any damage or injury to persons or

property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim any implied

warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a competent

professional person should be sought.

PRODUCTION INFORMATION

For manuscripts that have been accepted for publication, please contact:

E-mail: jsea@scirp.org

J. Software Engineering & Applications, 2010, 3, 827-838
doi:10.4236/jsea.2010.39096 Published Online September 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

827

What’s Wrong with Requirements Specification?
An Analysis of the Fundamental Failings of
Conventional Thinking about Software
Requirements, and Some Suggestions for
Getting it Right

Tom Gilb

Result Planning Limited, Norway and UK.
Email: Tom@Gilb.com

ABSTRACT

We know many of our IT projects fail and disappoint. The poor state of requirements methods and practice is frequently
stated as a factor for IT project failure. In this paper, I discuss what I believe is the fundamental cause: we think like
programmers, not engineers and managers. We do not concentrate on value delivery, but instead on functions, on
use-cases and on code delivery. Further, management is not taking its responsibility to make things better. In this paper,
ten practical key principles are proposed, which aim to improve the quality of requirements specification.

Keywords: Requirements, Value Delivery, Requirements Definition, Requirements Methods

1. Introduction

We know many of our IT projects fail and disappoint.
We know bad ‘requirements’, that is requirements that
are ambiguous or are not really needed, are often a factor.
However in my opinion, the real problem is one that al-
most no one has openly discussed or dealt with. Certainly,
it fails to be addressed by many widely known and
widely taught methods. So what is this problem? In a
nutshell: it is that we think like programmers, and not as
engineers and managers. In other words, we do not con-
centrate on value delivery, but instead on functions, on
use cases and on code delivery. And no one is attempting
to prevent this: IT project management and senior man-
agement are not taking their responsibility to make things
better.

2. Ten Key Principles for Successful
Requirements

In this paper, my ten key principles for improving the
approach to requirements are outlined. These principles
are not new, and they could be said to be simply com-
monsense. However, many IT projects still continue to
fail to grasp their significance, and so it is worth restating

them. These key principles are summarized in Figure 1.
Let’s now examine these principles in more detail and
provide some examples.

Note, unless otherwise specified, further details on all
aspects of Planguage can be found in [1].

2.1. Understand the Top Level Critical
Objectives

I see the ‘worst requirement sin of all’ in almost all pro-
jects we look at, and this applies internationally. Time
and again, the high-level requirements (the ones that
funded the project), are vaguely stated, and ignored by
the project team. Such requirements frequently look like
the example given in Figure 2.

The requirements in Figure 2 have been slightly ed-
ited to retain anonymity. They are for a real project that
ran for eight years and cost over 100 million US dollars.
The project failed to deliver any of these requirements.
However, the main problem is that these are not top-level
requirements: they fail to explain in sufficient detail what
the business is trying to achieve. There are additional
problems as well that I’ll discuss further later in this pa-
per (such as lack of quantification, mixing optional de-
signs into the requirements, and insufficient background

What’s Wrong with Requirements Specification? An Analysis of the Fundamental Failings of Conventional
Thinking about Software Requirements, and Some Suggestions for Getting it Right

Copyright © 2010 SciRes. JSEA

828

Ten Key Principles for Successful Requirements

1 Understand the top level critical objectives

2 Look towards value delivery: systems thinking, not just software

3 Define a ‘requirement’ as a ‘stakeholder-valued end state’

4 Think stakeholders: not just users and customers!

5 Quantify requirements as a basis for software engineering

6 Don’t mix ends and means

7 Focus on the required system quality, not just its functionality

8 Ensure there is ‘rich specification’: requirement specifications need far more information than the requirement

itself!

9 Carry out specification quality control (SQC)

10 Recognize that requirements change: use feedback and update requirements as necessary

Figure 1. Ten key principles for successful requirements.

Example of Initial Top Level Objectives

1 Central to the corporation’s business strategy is to be the world’s premier integrated <domain> service provider

2 Will provide a much more efficient user experience

3 Dramatically scale back the time frequently needed after the last data is acquired to time align, depth correct,

splice, merge, recomputed and/or do whatever else is needed to generate the desired products

4 Make the system much easier to understand and use than has been the case with the previous system

5 A primary goal is to provide a much more productive system development environment then was previously the

case

6 Will provide a richer set of functionality for supporting next generation logging tools and applications

7 Robustness is an essential system requirement

8 Major improvements in data quality over current practices

Figure 2. Example of initial top level objectives.

description).

Management at the CEO, CTO and CIO level did not
take the trouble to clarify these critical objectives. In fact,
the CIO told me that the CEO actively rejected the idea
of clarification! So management lost control of the pro-
ject at the very beginning.

Further, none of the technical ‘experts’ reacted to the
situation. They happily spent $100 million on all the
many suggested architecture solutions that were mixed in
with the objectives.

It actually took less than an hour to rewrite one of
these objectives so that it was clear, measurable, and
quantified. So in one day’s work the project could have
clarified the objectives, and avoided 8 years of wasted
time and effort.

1) The top ten critical requirements for any project can
be put on a single page.

2) A good first draft of the top ten critical require-
ments for any project can be made in a day’s work, as-

suming access to key management.

2.2. Look towards Value Delivery: Systems
Thinking, not Just a Focus on Software

The whole point of a project is delivering realized value,
also known as benefits, to the stakeholders: it is not the
defined functionality, and not the user stories that count.
Value can be defined as the benefit we think we get from
something [1]. See Figure 3. Notice the subtle distinc-
tion between initially perceived value (‘I think that
would be useful’), and realized value: effective and fac-
tual value (‘this was in practice more valuable than we
thought it would be, because …’).

The issue is that conventional requirements thinking is
that it is not closely enough coupled with ‘value’. IT
business analysts frequently fail to gather the information
supporting a more precise understanding and/or the cal-
culation of value. Moreover, the business people when
stating their requirements frequently fail to justify them

What’s Wrong with Requirements Specification? An Analysis of the Fundamental Failings of Conventional
Thinking about Software Requirements, and Some Suggestions for Getting it Right

Copyright © 2010 SciRes. JSEA

829

Figure 3. Value can be delivered gradually to stakeholders. Different stakeholders will perceive different value.

using value.

The danger if requirements are not closely tied to
value is that:

1) We risk failure to deliver the value expected, even if
‘requirements’ are satisfied

2) We risk having a failure to think about all the things
to do that are necessary prerequisites to actually deliver-
ing full value to real stakeholders on time: we need sys-
tems thinking – not just programming.

How can we articulate and document notions of value
in a requirement specification? See the Planguage exam-
ple for Intuitiveness, a component quality of Usability, in
Figure 4.

For brevity, a detailed explanation is unable to be
given here. Hopefully, the Planguage specification is
reasonably understandable without detailed explanation.
For example, the Goal statement (80%) specifies which
market (USA) and users (Seniors) it is intended for,
which set of tasks are valued (the ‘Photo Tasks Set’), and
when it would be valuable to get it delivered (2012). This
‘qualifier’ information in all the statements, helps docu-
ment where, who, what, and when the quality level ap-
plies. The additional Value parameter specifies the per-
ceived value of achieving 100% of the requirement. Of
course, more could be said about value and its specifica-
tion, this is merely a ‘wake-up call’ that explicit value
needs to be captured within requirements. It is better than
the more common specifications of the Usability re-
quirement that we often see, such as: “2.4. The product
will be more user-friendly, using Windows”.

So who is going to make these value statements in re-
quirements specifications? I don’t expect developers to
care much about value statements in requirements. Their

job is to deliver the requirement levels that someone else
has determined are valued. Deciding what sets of re-
quirements are valuable is a Product Owner (Scrum) or
Marketing Management function. Certainly only the IT-
related value should be determined by the IT staff.

2.3. Define a ‘Requirement’ as a
‘Stakeholder-Valued End State’

Do we all have a shared notion of what a ‘requirement’ is?
I am afraid that another of our problems. Everybody has
an opinion, and most of the opinions about the meaning
of the concept ‘requirement’ are at variance with most
other opinions. I believe that few of the popular defini-
tions are correct or useful. Below I provide you with my
latest ‘opinion’ about the best definition of ‘requirement’,
but note it is a ‘work in progress’ and possibly not my
final definition. Perhaps some of you can help improve
this definition even further.

To emphasize ‘the point’ of IT systems engineering, I
have decided to define a requirement as a “stakeholder-
valued end state”. You possibly will not accept, or use
this definition yet, but this is the definition that I shall
use in this paper, and I will argue the case for it. In addi-
tion, I have also identified, and defined a large number of
requirement concepts [1]. A sample of these concepts is
given in Figure 5.

Further, note that I make a distinction amongst:
1) A requirement (a stakeholder-valued end state)
2) A requirement specification
3) An implemented requirement
4) A design in partial, or full service, of implementing

a requirement.

What’s Wrong with Requirements Specification? An Analysis of the Fundamental Failings of Conventional
Thinking about Software Requirements, and Some Suggestions for Getting it Right

Copyright © 2010 SciRes. JSEA

830

Usability. Intuitiveness:

Type: Marketing Product Requirement.

Stakeholders: {Marketing Director, Support Manager, Training Center}.

Impacts: {Product Sales, Support Costs, Training Effort, Documentation Design}.

Supports: Corporate Quality Policy 2.3.

Ambition: Any potential user, any age, can immediately discover and correctly use all functions of the product, without

training, help from friends, or external documentation.

Scale: % chance that a defined [User] can successfully complete the defined [Tasks] <immediately>, with no external

help.

Meter: Consumer Reports tests all tasks for all defined user types, and gives public report.

--- Analysis ---

Trend [Market = Asia, User = {Teenager, Early Adopters}, Product = Main Competitor, Projection = 2013]: 95% ± 3%

< - Market Analysis.

Past [Market = USA, User = Seniors, Product = Old Version, Task = Photo Tasks Set, When = 2010]: 70% ± 10% < -

Our Labs Measures.

Record [Market = Finland, User = {Android Mobile Phone, Teenagers}, Task = Phone + SMS Task Set, Record Set =

January 2010]: 98% ± 1% < - Secret Report.

-- Our Product Plans ---

Goal [Market = USA, User = Seniors, Product = New Version, Task = Photo Tasks Set, When = 2012]: 80% ± 10% < -

Draft Marketing Plan.

Value [Market =USA, User = Seniors, Product = New Version, Task = Photo Tasks Set, Time Period = 2012]: 2 M

USD.

Tolerable [Market = Asia, User = {Teenager, Early Adopters}, Product = Our New Version, Deadline = 2013]: 97% ±

3% < - Marketing Director Speech.

Fail [Market = Finland, User = {Android Mobile Phone, Teenagers}, Task = Phone + SMS Task Set, Product Release

9.0]: Less Than 95%.

Value [Market = Finland, User = {Android Mobile Phone, Teenagers}, Task = Phone + SMS Task Set, Time Period =

2013]: 30K USD.

Figure 4. A practical made-up Planguage example, designed to display ways of making the value of a requirement clear.

Figure 5. Example of Planguage requirements concepts.

What’s Wrong with Requirements Specification? An Analysis of the Fundamental Failings of Conventional
Thinking about Software Requirements, and Some Suggestions for Getting it Right

Copyright © 2010 SciRes. JSEA

831

These distinctions will be described in more detail

later in this paper.

2.4. Think Stakeholders: Not Just Users and
Customers!

Too many requirements specifications limit their scope to
being too narrowly focused on user or customer needs.
The broader area of stakeholder needs and values should
be considered, where a ‘stakeholder’ is anyone or any-
thing that has an interest in the system [1]. It is not just
the end-users and customers that must be considered: IT
development, IT maintenance, senior management, gov-
ernment, and other stakeholders matter as well.

2.5. Quantify Requirements as a Basis for
Software Engineering

Some systems developers call themselves ‘software en-
gineers’, they might even have a degree in the subject, or
in ‘computer science’, but they do not seem to practice
any real engineering as described by engineering profes-
sors, like Koen [2]. Instead these developers all too often
produce requirements specifications consisting merely of
words. No numbers, just nice sounding words; good
enough to fool managers into spending millions for
nothing (for example, “high usability”).

Engineering is a practical bag of tricks. My dad was a
real engineer (with over 100 patents to his name!), and I
don’t remember him using just words. He seemed forever
to be working with slide rules and back-of-the-envelope
calculations. Whatever he did, he could you tell why it
was numerically superior to somebody else’s product. He
argued with numbers and measures.

My life changed professionally, when, in my twenties,
I read the following words of Lord Kelvin: “In physical
science the first essential step in the direction of learning
any subject is to find principles of numerical reckoning
and practicable methods for measuring some quality
connected with it. I often say that when you can measure
what you are speaking about, and express it in numbers,
you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your
knowledge is of a meagre and unsatisfactory kind; it may
be the beginning of knowledge, but you have scarcely in
your thoughts advanced to the state of Science, whatever
the matter may be” [3]. Alternatively, more simply, also
credited to Lord Kelvin: “If you can not measure it, you
can not improve it”.

The most frequent and critical reasons for software
projects are to improve them qualitatively compared to
their predecessors (which may or may not be automated
logic). However, we seem to almost totally avoid the

practice of quantifying these qualities, in order to make
them clearly understood, and also to lay the basis for
measuring and tracking our progress in improvement
towards meeting our quality level requirements.

This art of quantification of any quality requirement
should be taught as a fundamental to university students
of software and management disciplines (as it is in other
sciences and engineering). One problem seems to be that
the teachers of software disciplines do not appreciate that
quality has numeric dimensions and so cannot teach it.
Note the problem is not that managers and software peo-
ple cannot and do not quantify at all. They do. It is the lack
of ‘quantification of the qualitative’—the lack of numeric
quality requirements—that is the specific problem.

Perhaps we need an agreed definition of ‘quality’ and
‘qualitative’ before we proceed, since the common inter-
pretation is too narrow, and not well agreed. Most soft-
ware developers when they say ‘quality’ are only think-
ing of bugs (logical defects) and little else. Managers
speaking of the same software do not have a broader
perspective. They speak and write often of qualities, but
do not usually refer to the broader set of ‘-ilities’ as
qualities, unless pressed to do so. They may speak of
improvements, even benefits instead.

I believe that the concept of ‘quality’ is simplest ex-
plained as ‘how well something functions’. I prefer to
specify that it is necessarily a ‘scalar’ attribute, since
there are degrees of ‘how well’. In addition to quality,
there are other requirement-related concepts, such as
workload capacity (how much performance), cost (how
much resource), function (what we do), and design (how
we might do function well, at a given cost) [1,4]. Some
of these concepts are scalar and some, binary. See Fig-
ures 6 and 7 for some examples of quality concepts and
how quality can be related to the function, resources and
design concepts.

My simple belief is that absolutely all qualities that we
value in software (and associated systems) can be ex-
pressed quantitatively. I have yet to see an exception. Of
course most of you do not know that, or believe it. One
simple way to explore this is to search the internet. For
example: “Intuitiveness scale measure” turns up 3 million
hits, including this excellent study [5] by Yanga et al.

Several major corporations have top-level policy to
quantify all quality requirements (sometimes suggested
by me, sometimes just because they are good engineers).
They include IBM, HP, Ericsson and Intel [1,4].

The key idea for quantification is to define, or reuse a
definition, of a scale of measure. For example: (earlier
given with more detail)

To give some explanation of the key quantification
features in Figure 8:

What’s Wrong with Requirements Specification? An Analysis of the Fundamental Failings of Conventional
Thinking about Software Requirements, and Some Suggestions for Getting it Right

Copyright © 2010 SciRes. JSEA

832

Figure 6. A way of visualizing qualities in relation to function and cost. Qualities and costs are scalar variables, so we can
define scales of measure in order to discuss them numerically. The arrows on the scale arrows represent interesting points,
such as the requirement levels. The requirement is not ‘security’ as such, but a defined, and testable degree of security [1].

Figure 7. A graphical way of understanding performance attributes (which include all qualities) in relation to function, de-
sign and resources. Design ideas cost some resources, and design ideas deliver performance for given functions. Source [1].

1) Ambition is a high level summary of the require-
ment. One that is easy to agree to, and understand
roughly. The Scale and Goal following it MUST corre-
late to this Ambition statement.

2) Scale is the formal definition of our chosen scale of
measure. The parameters [User] and [Task] allow us to
generalize here, while becoming more specific in detail
below (see earlier example). They also encourage and
permit the reuse of the Scale, as a sort of ‘pattern’.

3) Meter is a defined measuring process. There can be

more than one for different occasions. Notice the Kelvin
quotation above, how he twice in the same sentence dis-
tinguishes carefully between numeric definition (Scale),
and measurement process or instrument (Meter). Many
people, I hope you are not one, think they are the same
thing, for example: Km/hour is not a speedometer, and a
volt is not a voltmeter.

4) Goal is one of many possible requirement levels
(see earlier detail for some others; Fail, Tolerable,
Stretch, Wish, are other requirement levels). We are de-

What’s Wrong with Requirements Specification? An Analysis of the Fundamental Failings of Conventional
Thinking about Software Requirements, and Some Suggestions for Getting it Right

Copyright © 2010 SciRes. JSEA

833

fining a stakeholder valued future state (state = 80% ±
10%).

One stakeholder is ‘USA Seniors’. The future is 2012.
The requirement level type, Goal is defined as a very
high priority, budgeted promise of delivery. It is of
higher priority than a Stretch or Wish level. Note other
priorities may conflict and prevent this particular re-
quirement from being delivered in practice.

If you know the conventional state of requirements
methods, then you will now, from this example alone,
begin to appreciate the difference that I am proposing.
Especially for quality requirements. I know you can
quantify time, costs, speed, response time, burn rate, and
bug density—but there is more!

Here is another example of quantification. It is the ini-
tial stage of the rewrite of Robustness from the Figure 2
example. First we determined that Robustness is complex
and composed of many different attributes, such as Test-
ability. See Figure 9.

And see Figure 10, which quantitatively defines one
of the attributes of Robustness, Testability.

Note this example shows the notion of there being dif-
ferent levels of requirements. Principle 1 also has rele-
vance here as it is concerned with top-level objectives
(requirements). The different levels that can be identified
include: corporate requirements, the top-level critical few
project or product requirements, system requirements and
software requirements. We need to clearly document the

Usability. Intuitiveness:

Type: Marketing Product Quality Requirement.

Ambition: Any potential user, any age, can immediately discover and correctly use all functions of the product, without

training, help from friends, or external documentation.

Scale: % chance that defined [User] can successfully complete defined [Tasks] <immediately> with no external help.

Meter: Consumer reports tests all tasks for all defined user types, and gives public report.

Goal [Market = USA, User = Seniors, Product = New Version, Task = Photo Tasks Set, When = 2012]: 80% ± 10% < -

Draft Marketing Plan.

Figure 8. A simple example of quantifying a quality requirement, ‘Intuitiveness’.

Robustness:

Type: Complex Product Quality Requirement.

Includes: {Software Downtime, Restore Speed, Testability, Fault Prevention Capability, Fault Isolation Capability, Fault

Analysis Capability, Hardware Debugging Capability}.

Figure 9. Definition of a complex quality requirement, Robustness.

Testability:

Type: Software Quality Requirement.

Version: Oct 20, 2006.

Status: Draft.

Stakeholder: {Operator, Tester}.

Ambition: Rapid duration automatic testing of <critical complex tests> with extreme operator setup and initiation.

Scale: The duration of a defined [Volume] of testing or a defined [Type of Testing] by a defined [Skill Level] of system

operator under defined [Operating Conditions].

Goal [All Customer Use, Volume = 1,000,000 data items, Type of Testing = WireXXXX vs. DXX, Skill Level = First

Time Novice, Operating Conditions = Field]: < 10 minutes.

Design: Tool simulators, reverse cracking tool, generation of simulated telemetry frames entirely in software, application

specific sophistication for drilling – recorded mode simulation by playing back the dump file, application test harness

console < –6.2.1 HFS.

Figure 10. Quantitative definition of testability, an attribute of Robustness.

What’s Wrong with Requirements Specification? An Analysis of the Fundamental Failings of Conventional
Thinking about Software Requirements, and Some Suggestions for Getting it Right

Copyright © 2010 SciRes. JSEA

834

level and the interactions amongst these requirements.

An additional notion is that of ‘sets of requirements’.
Any given stakeholder is likely to have a set of require-
ments rather than just an isolated single requirement. In
fact, achieving value could depend on meeting an entire
set of requirements.

2.6. Don’t Mix Ends and Means

“Perfection of means and confusion of ends seem to
characterize our age.” Albert Einstein. 1879-1955.

The problem of confusing ends and means is clearly an
old one, and deeply rooted. We specify a solution, design
and/or architecture, instead of what we really value—our
real requirement [6]. There are explanatory reasons for
this—for example solutions are more concrete, and what
we want (qualities) are more abstract for us (because we
have not yet learned to make them measurable and con-
crete).

The problems occur when we do confuse them: if we
do specify the means, and not our true ends. As the say-
ing goes: “Be careful what you ask for, you might just
get it” (unknown source). The problems include:

1) You might not get what you really want,
2) The solution you have specified might cost too

much or have bad side effects, even if you do get what
you want,

3) There may be much better solutions you don’t know
about yet.

So how to we find the ‘right requirement’, the ‘real
requirement’ [6] that is being ‘masked’ by the solution?
Assume that there probably is a better formulation, which
is a more accurate expression of our real values and
needs. Search for it by asking ‘Why?’ Why do I want X,
it is because I really want Y, and assume I will get it
through X. But, then why do I want Y? Because I really
want Z and assume that is the best way to get X. Con-
tinue the process until it seems reasonable to stop. This is
a slight variation on the ‘5 Whys’ technique [7], which is

normally used to identify root causes of problems (rather
than high level objectives).

Assume that our stakeholders will usually state their
values in terms of some perceived means to get what
they really value. Help them to identify (The 5 Whys?)
and to acknowledge what they really want, and make that
the ‘official’ requirement. Don’t insult them by telling
them that they don’t know what they want. But explain
that you will help them more-certainly get what they
more deeply want, with better and cheaper solutions,
perhaps new technology, if they will go through the ‘5
Whys?’ process with you. See Figure 11.

Note that this separation of designs from the require-
ments does not mean that you ignore the solutions/de-
signs/architecture when software engineering. It is just
that you must separate your requirements including any
mandatory means, from any optional means.

2.7. Focus on the Required System Quality, Not
Just its Functionality

Far too much attention is paid to what the system must
do (function) and far too little attention is given to how
well it should do it (qualities)—in spite of the fact that
quality improvements tend to be the major drivers for
new projects. See Table 1, which is from the Confirmit
case study [8]. Here focusing on the quality requirements,
rather than the functions, achieved a great deal!

2.8. Ensure there is ‘Rich Specification’:
Requirement Specifications need Far More
Information than the Requirement itself

Far too much emphasis is often placed on the require-
ment itself; and far too little concurrent information is
gathered about its background, for example: who wants
this requirement and why? What benefits do they per-
ceive from this requirement? I think the requirement it-
self might be less than 10% of a complete requirement
specification that includes the background information.

I believe that background specification is absolutely

Why do you require a ‘password’? For Security!

What kind of security do you want? Against stolen information

What level of strength of security against stolen information are you willing to pay for? At least a 99% chance that

hackers cannot break in within 1 hour of trying! Whatever that level costs up to €1 million.

So that is your real requirement? Yep.

Can we make that the official requirement, and leave the security design to both our security experts, and leave it to

proof by measurement to decide what is really the right design? Of course!

The aim being that whatever technology we choose, it gets you the 99%?

Sure, thanks for helping me articulate that!

Figure 11. Example of the requirement, not the design feature, being the real requirement.

What’s Wrong with Requirements Specification? An Analysis of the Fundamental Failings of Conventional
Thinking about Software Requirements, and Some Suggestions for Getting it Right

Copyright © 2010 SciRes. JSEA

835

Table 1. Extract from confirmit case study [8].

Description of requirement/work task Past Status

Usability. Productivity: Time for the system to generate a survey 7200 sec 15 sec

Usability. Productivity: Time to set up a typical market research report 65 min 20 min

Usability. Productivity: Time to grant a set of end-users access to a report set and
distribute report login information

80 min 5 min

Usability. Intuitiveness: The time in minutes it takes a medium-experienced pro-
grammer to define a complete and correct data transfer definition with Confirmit
Web Services without any user documentation or any other aid

15 min 5 min

Performance. Runtime. Concurrency: Maximum number of simultaneous respondents
executing a survey with a click rate of 20 sec and a response time < 500ms given a
defined [Survey Complexity] and a defined [Server Configuration, Typical]

250 users 6000

mandatory: it should be a corporate standard to specify a
great deal of this related information, and ensure it is
intimately and immediately tied into the requirement
specification itself.

Such background information is the part of a specifi-
cation, which is useful related information, but is not
central (core) to the implementation, and nor is it com-
mentary. The central information includes: Scale, Meter,
Goal, Definition and Constraint. Commentary is any de-
tail that probably will not have any economic, quality or
effort consequences if it is incorrect, for example, notes
and comments.

Background specification includes: benchmarks {Past,
Record, Trend}, Owner, Version, Stakeholders, Gist

(brief description), Ambition, Impacts, and Supports. The
rationale for background information is as follows:

1) To help judge value of the requirement
2) To help prioritize the requirement
3) To help understand risks with the requirement
4) To help present the requirement in more or less de-

tail for various audiences and different purposes
5) To give us help when updating a requirement
6) To synchronize the relationships between different

but related levels of the requirements
7) To assist in quality control of the requirements
8) To improve the clarity of the requirement.
See Figure 12 for an example, which illustrates the

help given by background information regarding risks.

Reliability:

Type: Performance Quality.

Owner: Quality Director. Author: John Engineer.

Stakeholders: {Users, Shops, Repair Centers}.

Scale: Mean Time Between Failure.

Goal [Users]: 20,000 hours < - Customer Survey, 2004.

Rationale: Anything less would be uncompetitive.

Assumption: Our main competitor does not improve more than 10%.

Issues: New competitors might appear.

Risks: The technology costs to reach this level might be excessive.

Design Suggestion: Triple redundant software and database system.

Goal [Shops]: 30,000 hours < - Quality Director.

Rationale: Customer contract specification.

Assumption: This is technically possible today.

Issues: The necessary technology might cause undesired schedule delays.

Risks: The customer might merge with a competitor chain and leave us to foot the costs for the component parts

that they might no longer require.

Design Suggestion: Simplification and reuse of known components.

Figure 12. A requirement specification can be embellished with many background specifications that will help us to under-
stand risks associated with one or more elements of the requirement specification [9].

What’s Wrong with Requirements Specification? An Analysis of the Fundamental Failings of Conventional
Thinking about Software Requirements, and Some Suggestions for Getting it Right

Copyright © 2010 SciRes. JSEA

836

Let me emphasize that I do not believe that this back-

ground information is sufficient if it is scattered around
in different documents and meeting notes. I believe it
needs to be directly integrated into a master sole reusable
requirement specification object for each requirement.

Otherwise it will not be available when it is needed, and
will not be updated, or shown to be inconsistent with
emerging improvements in the requirement specification.
See Figure 13 for a requirement template for function
specification [1], which hints at the richness possible

TEMPLATE FOR FUNCTION SPECIFICATION <with hints>

Tag: <Tag name for the function>.

Type: <{Function Specification, Function (Target) Requirement, Function Constraint}>.

=================================== Basic Information ===================================

Version: <Date or other version number>.

Status: <{Draft, SQC Exited, Approved, Rejected}>.

Quality Level: <Maximum remaining major defects/page, sample size, date>.

Owner: <Name the role/email/person responsible for changes and updates to this specification>.

Stakeholders: <Name any stakeholders with an interest in this specification>.

Gist: <Give a 5 to 20 word summary of the nature of this function>.

Description: <Give a detailed, unambiguous description of the function, or a tag reference to someplace where it is

detailed. Remember to include definitions of any local terms>.

===================================== Relationships =====================================

Supra-functions: <List tag of function/mission, which this function is a part of. A hierarchy of tags, such as A.B.C, is

even more illuminating. Note: an alternative way of expressing supra-function is to use Is Part Of>.

Sub-functions: <List the tags of any immediate sub-functions (that is, the next level down), of this function. Note:

alternative ways of expressing sub-functions are Includes and Consists Of>.

Is Impacted By: <List the tags of any design ideas or Evo steps delivering, or capable of delivering, this function. The

actual function is NOT modified by the design idea, but its presence in the system is, or can be, altered in some way.

This is an Impact Estimation table relationship>.

Linked To: <List names or tags of any other system specifications, which this one is related to intimately, in addition to

the above specified hierarchical function relations and IE-related links. Note: an alternative way is to express such a

relationship is to use Supports or Is Supported By, as appropriate>.

====================================== Measurement ====================================

Test: <Refer to tags of any test plan or/and test cases, which deal with this function>.

================================ Priority and Risk Management =============================

Rationale: < Justify the existence of this function. Why is this function necessary? >.

Value: <Name [Stakeholder, time, place, event>]: <Quantify, or express in words, the value claimed as a result of de-

livering the requirement>.

Assumptions: <Specify, or refer to tags of any assumptions in connection with this function, which could cause prob-

lems if they were not true, or later became invalid>.

Dependencies: <Using text or tags, name anything, which is dependent on this function in any significant way, or

which this function itself, is dependent on in any significant way>.

Risks: <List or refer to tags of anything, which could cause malfunction, delay, or negative impacts on plans, require-

ments and expected results>.

Priority: <Name, using tags, any system elements, which this function can clearly be done after or must clearly be done

before. Give any relevant reasons>.

Issues: <State any known issues>.

====================================== Specific Budgets ==================================

Financial Budget: <Refer to the allocated money for planning and implementation (which includes test) of this func-

tion>.

Figure 13. A template for function specification [1].

What’s Wrong with Requirements Specification? An Analysis of the Fundamental Failings of Conventional
Thinking about Software Requirements, and Some Suggestions for Getting it Right

Copyright © 2010 SciRes. JSEA

837

for background information.

2.9. Carry out Specification Quality Control
(SQC)

There is far too little quality control of requirements,
against relevant standards for requirements. All require-
ments specifications ought to pass their quality control
checks before they are released for use by the next proc-
esses. Initial quality control of requirements specification,
where there has been no previous use of specification
quality control (SQC) (also known as Inspection), using
three simple quality-checking rules (‘unambiguous to
readers’, ‘testable’ and ‘no optional designs present’),
typically identifies 80 to 200+ words per 300 words of
requirement text as ambiguous or unclear to intended
readers [10]!

2.10. Recognise That Requirements Change: Use
Feedback and Update Requirements as
Necessary

Requirements must be developed based on on-going
feedback from stakeholders, as to their real value.
Stakeholders can give feedback about their perception of
value, based on realities. The whole process is a ‘Plan
Do Study Act’ cyclical learning process involving many
complex factors, including factors from outside the sys-
tem, such as politics, law, international differences, eco-
nomics, and technology change.

The requirements must be evolved based on realistic
experience. Attempts to fix them in advance, of this ex-
perience flow, are probably wasted energy: for example,
if they are committed to—in contracts and fixed specifi-
cations.

3. Who or What will Change Things?

Everybody talks about requirements, but few people
seem to be making progress to enhance the quality of
their specifications and improve support for software
engineering. I am pessimistic. Yes, there are internation-
ally competitive businesses, like HP and Intel that have
long since improved their practices because of their
competitive nature and necessity. But they are very dif-
ferent from the majority of organizations building soft-
ware. The vast majority of IT systems development
teams we encounter are not highly motivated to learn or
practice first class requirements (or anything else!). Nei-
ther the managers nor the developers seem strongly mo-
tivated to improve. The reason is that they get by with,
and get well paid for, failed projects.

The universities certainly do not train IT/computer sci-

ence students well in requirements, and the business
schools also certainly do not train managers about such
matters [11]. The fashion now seems to be to learn over-
simplified methods, and/or methods prescribed by some
certification or standardization body. Interest in learning
provably more-effective methods is left to the enlight-
ened and ambitions few—as usual. So, it is the only the
elite few organizations and individuals who do in fact
realize the competitive edge they get with better practices
[8,12]. Maybe this is simply the way the world is: first
class and real masters of the art are rare. Sloppy ‘mud-
dling through’ is the norm. Failure is inevitable or per-
haps, denied. Perhaps insurance companies and lawmak-
ers might demand better practices, but I fear that even
that would be corrupted in practice, if history is any
guide (think of CMMI and the various organizations at
Level 5).

Excuse my pessimism! I am sitting here writing with
the BP Gulf Oil Leak Disaster in mind. The BP CEO
Hayward just got his reward today of £11 million in pen-
sion rights for managing the oil spill and 11 deaths. In
2007, he said his main job was “to focus ‘laser like’ on
safety and reliability” [13]. Now how would you define,
measure and track those requirements?

Welcome if you want to be exceptional! I’d be happy
to help!

4. Summary

Current typical requirements specification practice is
woefully inadequate for today’s critical and complex
systems. There seems to be wide agreement about that. I
have personally seen several real projects where the ex-
ecutives involved allowed over $100 million to be
wasted on software projects, rather than ever changing
their corporate practices. $100 million here and there,
corporate money, is not big money to these guys!

We know what to do to improve requirements specifi-
cation, if we want to, and some corporations have done
so, some projects have done so, some developers have
done so, some professors have done so: but when is the
other 99.99% of requirements stakeholders going to
wake up and specify requirements to a decent standard?
If there are some executives, governments, professors
and/or consultancies, who want to try to improve their
project requirements, then I suggest start by seeing how
your current requirements specifications measure up to
addressing the ten key principles in this paper.

5. Acknowledgements

Thanks to Lindsey Brodie for editing this paper.

What’s Wrong with Requirements Specification? An Analysis of the Fundamental Failings of Conventional
Thinking about Software Requirements, and Some Suggestions for Getting it Right

Copyright © 2010 SciRes. JSEA

838

REFERENCES

[1] T. Gilb, “Competitive Engineering: A Handbook for Sys-
tems Engineering, Requirements Engineering, and Soft-
ware Engineering Using Planguage,” Elsevier Butter-
worth-Heinemann, Boston, 2005.

[2] B. V. Koen, “Discussion of the Method: Conducting the
Engineer’s Approach to Problem Solving,” Oxford Uni-
versity Press, Oxford, 2003.

[3] L. Kelvin, “Electrical Units of Measurement,” a Lecture
Given on 3 May 1883, Published in the Book “Popular
Lectures and Addresses, Volume 1,” 1891.

[4] T. Gilb, “Principles of Software Engineering Manage-
ment,” Addison-Wesley, Boston, 1988.

[5] Z. Yanga, S. Caib, Z. Zhouc and N. Zhoua, “Develop-
ment and Validation of an Instrument to Measure User
Perceived Service Quality of Information Presenting Web
Portals,” Information & Management, Vol. 42, No. 4,
2005, pp. 575-589.

[6] T. Gilb, “Real Requirements”. http://www.gilb.com/tiki-
download_file.php?fileId =28

[7] T. Ohno, “Toyota Production System: Beyond Large-

Scale Production,” Productivity Press, New York, 1988.

[8] T. Johansen and T. Gilb, “From Waterfall to Evolutionary
Development (Evo): How we Created Faster, More
User-Friendly, More Productive Software Products for a
Multi-National Market,” Proceedings of INCOSE, Roch-
ester, 2005. http://www.gilb.com/tiki-download_file.php?
fileId=32

[9] T. Gilb, “Rich Requirement Specs: The Use of Planguage
to Clarify Requirements,” http://www.gilb.com/tiki-down-
load_file.php?fileId=44

[10] T. Gilb, “Agile Specification Quality Control, Testing
Experience,” March 2009. www.testingexperience.com/
testingexperience01_08.pdf

[11] K. Hopper and W. Hopper, “The Puritan Gift,” I. B. Tau-
rus and Co. Ltd., London, 2007.

[12] “Top Level Objectives: A Slide Collection of Case Stud-
ies”. http://www.gilb.com/tiki-download_file.php?fileId=
180

[13] “Profile: BP’s Tony Hayward, BBC Website: News US
and Canada,” 27 July 2010. http://www.bbc.co.uk/news/
world-us-canada-10754710

J. Software Engineering & Applications, 2010, 3, 839-844
doi:10.4236/jsea.2010.39097 Published Online September 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

839

Benefits Management Process Complements Other
Project Management Methodologies

Ioannis Karamitsos1, Charalampos Apostolopoulos2, Moteb Al Bugami3

1ON Telecoms S. A, 21 Spirou Merkouri Str, Athens, Greece; 24 Nicomidias Str, Nea Smirni, Athens, Greece; 3Department of
Management Information Systems, King Abdulaziz University, Jeddah, Saudi Arabia.
Email: ch_apostolopoulos@yahoo.co.uk

ABSTRACT

The benefits management approach complements most of the common project management methodologies such as
critical chain project management (CCPM), and PRINCE2. The majority of these methodologies focus on how to com-
ply with three parameters: time, cost and quality instead of identifying the positive outcomes and benefits for an or-
ganization. In this paper, a different approach for the organization is presented, which focuses on positive outcomes
named as benefits. Moreover, a comparison between Benefits Management and PRINCE2 methodologies is illustrated.

Keywords: Benefits Management, PRINCE2, Requirements Analysis

1. Introduction

Benefits Management is the definition, planning, struc-
turing and actual realisation of the benefits of a business
change or business improvement project. The benefits
management approach is necessary for the business pro-
jects and programmes so as to deliver benefits, however,
they are frequently criticised for failing to achieve their
objectives. Standish Group, Chaos report [1] showed that
around 70% of business improvement projects fail to
deliver their expected benefits, and even when they are
achieved in part, often they are far from fully realised.
The reasons for this are varied, but significant elements
can be directly related to, for example:
 Business cases focused on target savings instead of

expressing business benefits in a manner that can
be understood and implemented

 Too much emphasis on deliverables or outcomes
(e.g. capabilities) which on their own do not deliver
specific benefits

 No mechanisms or in particular structures to man-
age their realisation

However, Apostolopoulos and Karamitsos [2], ex-
plained project failure reasoning in terms of behavioural
perspectives. More precisely, the lacking of efficient
communication may be a result of different individual
and environmental approaches of a project. In other
words, the client’s inputs are rooted from an operational
environment whereas the project manager’s ideas are
rooted from the past experience in a project-based envi-

ronment.
In effect, because of lacking of understanding, com-

munication barriers exist, project managers do not under-
stand what their clients really expect (lack of user input)
and projects fail. In order to overcome these barriers, it is
necessary both parties to enhance their dialectic rela-
tionships, commit to a certain goal planning and if nec-
essary change the requirements and specifications so as
to reach the desired outcome, which is project success.

In general for a project to be successful, is has to be
delivered on time, within budget, and conform to the
client’s requirements; requirements analysis is mainly
related to determine the needs and conditions to be met
for a successful project, taking into account the possible
risks and of course, understand customer’s needs and
expectations.

In literature, there exist many different methodologies
which are related to analyzing the requirements of a pro-
ject, which in effect become a tool for effective project
management.

Proper requirements analysis drive almost every task
and activity, however, the identifications of when, how
and what has to be done should be a bidirectional activity
among all the parties involved.

In benefits management approach, the benefits (project
outcomes) are analysed prior to starting managing a pro-
ject, whereas, in traditional methodologies, such as Agile
(cyclic software development process, encourages leader-
ship philosophy), DSDM (Dynamic System Develop-
ment; software development methodology), PRINCE2

Benefits Management Process CompLements Other Project Management Methodologies

Copyright © 2010 SciRes. JSEA

840

(structured approach), focus is given more on the suc-
cessful completions of different tasks, which in effect
will lead to beneficial outcomes; in CCPM methodology
emphasis is given on the resources (physical and human)
so as to execute project tasks.

Projects are often considered to be finished when their
deliverables are complete. Nonetheless, the benefits of a
project are typically realised over time; this may leave no
one responsible during the realisation phase and often no
structure through which to manage this important ele-
ment.

For benefits realisation to work, it is crucial to identify
clear benefits (early in the lifecycle) that are related to
unambiguous business objectives, and to assign owner-
ship to those “responsible” for planning and managing
their achievement.

A central goal of this process is to bring structure, ac-
countability, clarity and discipline to the definition and
delivery of the benefits inherent in business projects. It is
therefore a key aspect of programme management and
relates to other business processes, such as portfolio
management and must start in the earliest stages of the
change/business improvement cycle.

While investment appraisal may provide the justifica-
tion for the proposition in a business case, effective re-
alisation planning enables organisations to understand
and maximise the potential benefits that can be modelled
using such techniques. It must also identify and address
the changes that will be required, including any resis-
tance that may be encountered. These changes them-
selves may well need to be managed carefully as part of a
change management programme.

The most obvious thing to say is that experience dem-
onstrates that organisations do not find this task easy, as
businesses are not abundant in skills or track record in its
execution (in a formal way).

But, what are the things that typically have to improve
most?
 understanding what constitutes a specific benefit

(versus general outcomes or target savings for ex-
ample) in any specific business and differentiating
them from objectives, outcomes, and their end fi-
nancial (or other) results

 the way benefits are expressed and structured in
business cases and their alignment with strategic
business objectives in particular, (this is funda-
mental to success)

 the whole planning and management of this active-
ity or process

2. The Benefits Management Framework

The framework must be driven by the organisation’s stra-

tegic planning and portfolio management processes. To
be effective, it needs to become a standard management
practice throughout the business change lifecycle, espe-
cially during programme and project definition.

The first step is to establish a framework that defines
how benefits should be identified, structured, planned
and realised. (See Figure 1)

The framework should classify types of benefits of
value to businesses, and reference the organisation’s
current strategic goals and objectives, for example:
 service/process/quality/productivity/improvements
 cost avoidance/reduction
 staff morale/motivation
 revenue generation/customer retention
The potential benefits identified must not simply exist

as a list. It is important to identify dependencies to un-
derstand where the achievement of one benefit is de-
pendent on the realisation of another.

Once they have been identified, analysed and struc-
tured, the next task is to create a realisation plan. This
should also enable the organisation to identify the man-
agement actions required to support and execute that
plan.

2.1. Benefits Focused Business Cases

A business case should set out the basis of an investment
or change. Business cases must demonstrate the return or
value that the owning organisation will achieve by the
proposition in the business case. Business cases must
demonstrate how the value or return will be delivered, by
identifying specific benefits that will be accrued via
making the investment/change. This is often very differ-
ent from making summary statements about planned or
targeted financial savings that will be achieved.

Many business cases in the past went no further than

Figure 1. Benefits management framework.

Benefits Management Process CompLements Other Project Management Methodologies

Copyright © 2010 SciRes. JSEA

841

identifying outcomes of potential value to stakeholders
(such as capabilities), with little or no identification of
planned changes. It should be of little surprise that in
many of those examples, limited measurable improve-
ment was achieved.

Any business case should not necessarily require
volumes of text, but the core should be summarised suc-
cinctly against the following structure:
 goal, objectives, outcomes and planned benefits,

risks, assumptions

2.2. Delivering Strategic Goals and Objectives

Most organisations have current strategic goals and ob-
jectives. These should be articulated and be very evident
throughout benefits identification and planning. The
business case needs to be evaluated thoroughly to ensure
that it is focused on and maximises delivery or achieve-
ment of strategic goals. Following this, the realisation
plans will provide a control mechanism to provide con-
tinual feedback against strategic goals.

2.3. Maintaining the Focus

During the life of a project it may be necessary to modify
the objectives, change priorities or redefine the desired
outcomes in the light of changing circumstances. It is
important that structure and accountability continues
through and beyond the life of the project and beyond, to
ensure that the benefits of most value are realised at aff-
ordable cost and on schedule.

2.4. Ownership and Implementation of the
Benefits Realisation Plan

Many of the anticipated benefits will not start to materi-
alise until after the project has been delivered. It is
therefore essential that the ownership of the benefits re-
alisation plan is maintained beyond project delivery
through to complete realisation. The process should also
include a post implementation review, thereby allowing
time for analysis and a proper evaluation against the
original business case.

In practice most business managers are happy enough
to accept these challenges as they recognise that Benefits
Management provides them with an effective way of
tackling a significant issue in their organisation.

2.5. Do’s and Don’ts of Benefits Management

According to Ward and Murray [3] there are some Do’s
and Don’ts as far as Benefits Management is concerned:
 Do start Benefit Management on day one of every

project
 Do involve all potential and known stakeholders

early in determination of benefits

 Do make sure all dis-benefits are exposed and un-
derstood-ensure they are a price worth paying

 Do carry out a pilot or prototype if benefits are un-
certain to determine what benefits are achievable
and how to realize them

 Do ensure that all changes that affect the plan are
interpreted in terms of the benefits and the benefit
plan

 Do publicise benefits that have been achieved
 Do use Benefit Management to stop bad projects
 Do not expect to be able to predict all benefits in

advance-many will only be understood after im-
plementation

 Do not stop managing the benefits when the ‘pro-
ject’ is finished

3. Benefits Management and PRINCE2
Comparison

PRINCE2 is an example of a structured project manage-
ment approach that it is used widely in both the private
and public sectors. It was developed by the Office of
Government Commerce (OCG) and is the recommend
approach by UK government projects [4].

PRINCE2, can be considered a refinement of an earlier
approach PRINCE2 which is based on existing best prac-
tises in project management and other methodologies.
OGC was involved in the early stages of the research that
led to the development of the benefits management
process described in this paper.

There seems to be a high degree of correlation be-
tween the two approaches allowing them to be used to-
gether in a way that draws on the specific strengths of
each approach. Nevertheless, even though being consis-
tent, differences also are existent.

PRINCE2 is defined in eight distinctive processes for
the effective management and governance of a project.
(See Figure 2)

Each distinct process is described briefly here and then,
how benefits management and PRINCE2 can be com-
bined to complement each other follows.

1) Starting up a project; this sends to be the first and a
short process in which the project management team is
appointed and the aims of the project are communicated.
For this processes a Project Mandate is required, in
which the reasons and the products (outcome) is the pro-
ject is defined.

2) Directing a project; this is a process for the project
board, in effect the senior management responsible for
the project to direct its activities and resources. The
process lasts for the full duration of the project and has
five major strands within it:

Authorising initiation; Approval of the business case;

Benefits Management Process CompLements Other Project Management Methodologies

Copyright © 2010 SciRes. JSEA

842

Figure 2. Effective management and governance processes Source: OGC, PRINCE2 Reference Manual (2005), p. 13.

Review of the project at stage boundaries; Ad hoc direc-
tion (progress monitoring) and ensuring the project
comes to a controlled close and that lessons are shared
with other projects.

3) Initiating a project; this process seeks to develop a
business case for the project which, is contained in a
project initiation document (PID). It includes also, the
plan and the cost of the project as well as ensuring that
the investment is well justified, taking into account the
respective risks. It is suggested that a PID contains much
information about a project including:
 Objectives
 Critical success factors and key performance indi-

cators
 Impacts and assumptions
 Constraints and option evaluations
 Benefits analysis
 Project costs
 Cost/benefit analysis
 Risks
 Delivery plan- including stages or milestones
4) Controlling a stage; one of the key principles in

PRINCE2; controlling projects is to break them into
manageable, smaller stages. In this process it is described
the monitoring and control activities, which are required
to keep a stage on track.

5) Managing product delivery; specifies the contract
between the project and suppliers. In effect the objective
of this process is to ensure that planned products (out-
come) are delivered as predefined. PRINCE2 calls the
work agreed in the process a “work package” and seeks
to ensure agreement on issues such as timing, quality and
cost. For this reason, checkpoint reports are often ex-
changed between team and project manager.

6) Managing stage boundaries; this process is related

to reporting on the performance of the previous stage,
approval from senior management so as to move to the
next stage, updating the project plan and detailed plan-
ning of the next stage. It actually produces the informa-
tion based on which the Project Board will take the key
decisions.

7) Planning; the planning process, is a repeatable
process and continues throughout the whole the project.
Each project plan (stage and team) must consider key
planning aspects. According to PRINCE2 all activities
should be logically be put in a sequence. Further to the
plan, the process has a product checklist and the risk log.

8) Closing a project; the project board decides to close
the project once its products are delivered and objectives
are met. Moreover it is ensured that follow-up actions are
undertaken and lessons shared are learned in conjunction
with other projects.

According to Ward and Daniel [5], while PRINCE2 is
analytical enough by providing very detailed guidelines
on how project management methods and practices can
be improved, on the other hand, benefits and their man-
agement seem to be described depthlessly.

To be more specific, while it is advised that the project
initiation document (project initiation stage) describes a
comprehensive benefit analysis; linking for example the
benefits to the changes required, appointing benefit own-
ers, settings measures for each benefit, the details on
how to accomplish it, is limited.

Benefits are considered to be very important as far as
the decision to manage a project is considered. This is
because benefits in many cases compensate risks. If the
risks in a project, in effect the possibility of failure is
high then the decision might be complicated and benefits
should be taken into account.

Essentially, the limited treatment of benefits is there-

Benefits Management Process CompLements Other Project Management Methodologies

Copyright © 2010 SciRes. JSEA

843

fore a noticeable area of weakness. As a walkthrough it
can be suggested that the tools and techniques related to
the first two stages of the five-stage process (identify
benefits, plan realisation) are used to develop a full bene-
fits plan. For PRINCE2, the benefits plan can be de-
scribed in the PID. The simplicity of the benefits man-
agement approach is also important and lies in this early
stage of the project.

Ward and Daniel [5] illustrated that the strength of
PRINCE2 lies in its comprehensiveness formality atten-
tion to detail and its robustness. However, the result of
being inevitably complex, has as a result, that most busi-
ness managers do not want or have the time to learn the
methodology or even be subjected to it.

Nevertheless, in UK it is the de facto standard for pro-
ject management required by the government; there are
also voices which claim that we are not far from the time
that it will be used as a standard by ISO quality man-
agement for quality control of project/s environment.

It is therefore suggested, that, PRINCE2 process of
controlling stages, managing state boundaries and man-
aging product delivery are used if required to undertake
the third stage of our benefits management process: the
execution of the benefits plan. A key part of PRINCE2
approach is the breaking of projects into phases. The
benefit plan particularly the benefits dependency network,
can prove a means of identifying and comparing possible

phases.
According to the closing process, as described in

PRINCE2 handbook, it is suggested that the success of
the project is reviewed and shared among the stake-
holders so as best practised to be revealed. However,
these best practices do not specifically focus on benefits.
Moreover, identification of further potential benefits is
not accurately described or described at all. In effect it is
suggested that benefits management process is followed
in these activities.

Finally, for organisations that have chosen as project
management methodology PRINCE2, the benefits eva-
luation which come up from the project evaluation, is
better to be included in the project closing process.

In Figure 3, it is illustrated how the benefits manage-
ment process and PRINCE2 are related and which ap-
proach suggested should lead at each stage.

4. Conclusions

Benefits Management should be considered the first pri-
ority of any project. This is because it describes effect-
tively the “steps” of how a project should be managed,
and consequently what will be the outcome, “benefits”.
The main purpose of Benefits Management or any other
similar process is to avoid project failure.

In effect, great attention is given in testing and imple-

Figure 3. Benefits management and PRINCE2 relation, Source: Ward J. and Daniel E. (2006), p. 274.

Benefits Management Process CompLements Other Project Management Methodologies

Copyright © 2010 SciRes. JSEA

844

menting business solutions. According to the benefits
management approach, the first step is to identify the
benefits, which in turn have to be structured, planned and
realised.

PRINCE2, is an alternative to structured project man-
agement methodologies and approaches. Compared to
Benefits Management one, benefits are treated in a lim-
ited way which suggest an obvious weakness, but it is a
lot stronger in analytically defining the details of the
processes.

Business management methodologies are not a pana-
cea against project failure; nevertheless, they can be seen
and used as a powerful tool in the hands of the stake-
holders which can lead to project success.

Proper requirements analysis drive almost every task
and activity, however, the identifications of when, how
and what has to be done should be a bidirectional activity
among all the parties involved. Failure in projects is a
status which every project manager tries to avoid; with
the aid of project methodologies and especially with be-
nefits management one, which complements other pro-
ject management methodologies the possibility of succ-

ess is enhanced.
Finally, the key message for managing project expec-

tations is effective, efficient communication and coop-
eration between the project manager and the client.

REFERENCES

[1] The Standish Group, “Chaos Report,” 2007. http://www.
standishgroup.com/search/search.php

[2] C. Apostolopoulos and I. Karamitsos, “The Success of IT
Projects Using Agile Methodology,” 1st International
Workshop on Requirements Analysis Proceedings, Pear-
sons Education, Elista, September 2009, pp. 13-21.

[3] J. Ward and P. Murray, “Benefits Management Best Prac-
tice Guidelines,” Information Systems Research Centre,
Cranfield School of Management, 2000.

[4] Office of Government Commerce, “Managing Successful
Project with PRINCE2 Reference Manual,” TSO (The
Stationery Office), London, 2005.

[5] J. Ward and E. Daniel, “Benefits Management-Delivering
Value from IS & IT Investments,” John Wiley & Sons,
New York, 2006.

J. Software Engineering & Applications, 2010, 3, 845-851
doi:10.4236/jsea.2010.39098 Published Online September 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

845

Requirements Analysis and Traceability at CIM
Level

Mohammad Yamin1, Venera Zuna2, Moteb Al Bugami1

1King Abdoulaziz University, Saudi Arabia; 2Albanian Mobile Communications, Tirana, Albania
Email: myamin@kau.edu.sa, vzuna@amc.al, maalbugami@kau.edu.sa

ABSTRACT

Poernomo suggested an approach for requirement analysis within the CIM level of the MDA framework. His approach
combined MEASUR, goal and object oriented analysis, and developed a new methodology that can be integrated within
the CIM level of the MDA. This paper adds requirement traceability capabilities to the method developed by Poernomo
and applies the extended method on a case study based on a high profile international law firm.

Keywords: Organizational Semiotics, MEASUR Requirements Traceability, CIM Requirements Traceability

1. Introduction

Quite a lot of research has been conducted to identify the
reasons of the failure of Information Systems. We all
know that a huge amount of money is spent every year
on Information Systems and in the efforts to understand
their failures. A very low rate (as low as one out of eight)
of successful projects is becoming a matter of great con-
cern. As much as 35% of the projects failed as a result of
poorly defined software requirements, for details see [1].
The requirements are evidently the most important deliv-
erable of the software engineering activity. Since the
requirements are the foundation of the end product, all
other product steps are based on the requirements. Errors
made at this stage would have a completely overwhelming
effect on the rest of the project, for details see [2]. It is at
the stage of user acceptance testing to realize that the
incomplete requirements and specifications would pro-
duce a camel instead of a horse required by the client.
According to Von Schlag [3] the majority of the defects
occur during the requirements phase. In order to deliver
successful projects it is essential to clearly understand
what the business needs are.

A number of methods and approaches have been de-
veloped to deal with the problem of user requirements,
such as MEASUR, KAOS, object oriented analysis and
many more. These methods and approaches examine
information systems from a different view. MEASUR
approaches the systems from a semantic point of view,
KAOS from an goal oriented view and object oriented
from a structural point of view. All these methods have
their own benefits and drawbacks. In 2000, the Object

Management Group [4] developed the Model Driven
Architecture (MDA) framework. This generated a new
environment that requirements analysis methods should
be compatible with. The key idea behind MDA is that
models can be used to auto generate other models. By
model we mean shapes, diagrams and code. The basic
MDA engine includes four layers namely the Computa-
tional Independent Model (CIM), Platform Independent
Model (PIM), Platform Specific Model and code. Trans-
formations allow the PIM to be transformed to PSM and
PSM to be transformed to code. Transformations from
CIM to PIM are very primitive and a great deal of work
still needs to done for requirement analysis at CIM level,
see [2], the lack of which results in poor quality product.

Poernomo [5] suggested an approach for requirement
analysis within the CIM level of the MDA framework in
2008. His approach combined MEASUR, goal analysis
and object oriented analysis, and developed a new meth-
odology that can be integrated within the CIM level of
the MDA. This approach solved most of the issues of
these methods while maintaining the benefits of individ-
ual methods. However his approach did not include a
mechanism for tracing requirements. In this paper we
will enhance Peornomo’s method with a requirement
traceability repository in order to achieve inbuilt re-
quirements management. The method will then be used
to conduct requirement analysis at the CIM level for top
tier law firm of our case study.

2. The Selected Method

A recent attempt to integrate a requirement analysis

Requirements Analysis and Traceability at CIM Level

Copyright © 2010 SciRes. JSEA

846

model at MDA’s CIM level is by Poernomo in 2008. In
this proposal parts from the approaches: MEASUR, Goal
driven Analysis and Object Oriented Analysis were used
together [6]. The figure below shows an over view of that
approach.

As it can be seen from the diagram in the Figure 1, the
methodology focuses on conducting requirements analy-
sis at CIM level of the MDA framework. According to
the method, at the beginning, stakeholder analysis should
be carried out and its findings should be captured and
categorised based on the organizational onion. Organiza-
tional onion is MEASUR’s equivalent for stakeholder
analysis. This not only lists the stakeholders and their
needs but also prioritises them, based on how critical
they are for the success of the project. In parallel with
organizational onion goal analysis should be conducted.
This will identify all the business goals and needs of the
client and ensure that they are properly documented and
captured. The goal analysis will also associate the busi-
ness goals dependencies in a hierarchical order. The re-
sults of both organizational onion and goal analysis will
be fed to the technical requirement table.

Table 1 consists of eight columns. The first column is
the actual business goal; the second column lists the
business goal dependencies that must be achieved prior
to achieving this goal. The third column is the develop-
ment priority of this goal. This is calculated by taking an
account the business priority and any functional depend-
encies. For example, assuming that the main goal is to
move a car, a sub goal would be to move each individual
wheel of the car. In order to move the car we must first
move the wheels of the car. Hence, the goal moving the
car is dependent on the sub goal of moving the wheels of
the car. Let’s assume that move the car goal has a higher
business priority than move the wheels of the car. How-
ever there exists an architecture priority as it is not possi-
ble to move the car without moving the wheels of the car.
As a result of this moving the wheels of the car is pushed
to a high priority. The fourth column is a list of all the
business owners. These are the stakeholders of this task
and are extracted from the organizational onion. It’s
worth noting that this can also affect the priority column.
For example, if this stakeholder is not close to the system
(this can be found in the organizational onion) than by

default this goal would have a lower priority than the
stakeholder’s goal that is closer to the system. The fifth
column is a list of users that will be affected by the
achievement of the specific goal. The start and finish
time columns are used for initial planning. The last col-
umn can be either yes or no and shows if the goal has
been approved or not. Only goals that have been con-
firmed will be pushed to the next phase.

The next phase is the generation of problem statements
and also known as stories in the agile communities. This
is a piece of text with its size to vary from one paragraph
to 3 pages. It provides more details of what the client
expects for this goal. This text is usually full of business
terminology and free of any technical details. In this
phase a problem statement will be written for each con-
firmed goal. Parallel to the problem statement the analyst
is required to produce user scenarios (use case diagrams)
for each goal. The number of required use case diagrams
depends on how many user functions are associated with
this goal.

The next phase is the generation of the ontology chart.
At this stage, the ontology and ontological dependencies

Organizational Onion Goal Driven
Requirement Analysis

Technical Requirement Table

Problem Statement

User Scenarios

Ontology Chart

Norms

Transformation

Component
Diagrams

Class
Diagrams

Other
PIMs

PIM

CIM

Figure 1. An overview of the selected approach.

Table 1. Technical requirements table.

Goal Dependencies Priority Owner Stakeholder Actor Start Time Finish Time Confirm

Move Car Move car wheels High Andrew Driver 1/8/2008 1/11/2008 yes

Move car wheels N/A High Andrew Driver 1/8/2008 1/11/2008 yes

Clean the car N/A Low John Block Cleaner 1/10/2008 1/10/2008 no

Requirements Analysis and Traceability at CIM Level

Copyright © 2010 SciRes. JSEA

847

will be identified from the problem statement. Once the
ontology chart is complete it will be tested against the
User scenarios which are stored in the form of use case
diagrams. To complete the dynamic aspect of the system
the analyst must specify ideally by the use of formal
methods the dynamic business norms that govern the
information system.

The proposal includes a MOF formal meta-model that
allows ontology charts to be used within the MDA
framework. Finally, the proposal also includes an auto-
matic transformation from ontology charts and the formal
norms to an object oriented diagram and suggested that
transformations are also possible for components, class
diagrams as well as other PIMS.

This methodology brings to light many advantages as
it builds upon all the other methods mentioned above.
This methodology proposed by Poermono and others is
immune to business changes and analyses the require-
ments of complying with the business goals as to analyse
the right system to add value to the system and the right
way to produce this system. By proposing a meta-model
for the ontology charts, it allows all the benefits of this
method to be carried over automatically to the computer
system by utilizing the MDA framework. If there is a
change at the requirements due to a change of the busi-
ness goal, the methods provides mechanisms for capturing
and reviewing this objective and can automatically be
applied to the computer system without any effort and
without increasing complexity of the system.

The MDA framework is capable to rebuild the system
with the new requirements without any effects to the rest
of the users apart from the ones impacted by the change
to the business goal. Another benefit of the methodology
is the simplicity. Its diagrams can be used and produced
by people that do not have computing background. This
methodology is a step towards bridging the gap between
the business analysis and software development.

3. Requirements Traceability

Requirements keep changing even during the project
development. A challenge for the requirements analyst is
to keep track of the changes in business requirements.
Anthony Finskenstain [7] has proposed requirements
traceability approach.

Requirements traceability is the ability to trace a re-
quirement at any stage of its life cycle, revisit or even
modify it. This is achieved by the use of appropriate
software tools and manual processes. Such tools are
document repositories able to search the documents for
key words, compare documents for similarities and
retrieve them for read or modification. Requirements
traceability allows the software development team and
the business stakeholders to locate and modify require-

ments at any stage of the requirements life cycle.
A recent survey on requirements management tools

showed that there are more than 44 tools in market
offering Capturing Requirements/Identification, Capture
System Element structure, Requirements Flowdown,
Traceability Analysis, Configuration Management, Do-
cuments and Other Output Media, Interfacing to Other
Tools and many more [8].

4. Extending the Selected Method

4.1. An Overview

Poernomo’s method is capable of delivering the benefits
of MEASUR, Goal Analysis and object oriented analysis
in the form of formal design, compatible with the MDA
framework and capable to generating high quality code.
The drawback however of that method is that, although it
supports future changes on requirements, it does not have
a mechanism for managing and tracing requirements.
Such an addition will allow the methodology to trace,
evaluate requirements, auto-generate test condition and
test cases, proving information about the cost, duration
and other information that can be used for planning as
well as the rest of the benefits of requirements traceability.
None of the current traceability tools auto-generate code
from requirements hence they are just used as document
management system.

The solution proposed in this paper will hold formal
models that can be used to produce other models and
code with the use of MDA framework. At the same time,
the basic functionality of trace requirements will be
allowed.

Figure 2 above shows how Poernomo’s original pro-
posal which is modified to accommodate requirements
traceability. Initially the technical requirements table is
stored to the traceability repository. This will be tempo-
rary and will keep track of all changes in the traceability
table. There is no point in storing any information from
the goal analysis or the organisational onion as the sum-
mary of these information is stored in the traceability
table.

The problem statement and the use cases will also be
stored in the traceability repository and be associated
with the requirements from the technical requirements
table. Finally the ontology chart and the business norms
will be stored in the repository and associated with prob-
lem statements.

4.2. Traceability Repository Structure

The following schema in Figure 3 shows the proposed
structure of the repository.

In the object schema above, the requirements table
stores information about the actualgoal in text form, it’s

Requirements Analysis and Traceability at CIM Level

Copyright © 2010 SciRes. JSEA

848

Organizational Onion

Goal Driven
Requirement Analysis

Technical Requirement Table

Problem Statement

User Scenarios

Ontology Chart

Norms

Transformation

Component
Diagrams

Class
Diagrams

Other PIMs

PIM

CIM

Traceability
Repository

Figure 2. Extension of the selected method.

priority, stakeholder, actor, start and finish time as well
as if it has been confirmed or not. The Dependences table
stores all the sub goals and associate them with a parent
goal. For each goal, there can be many use case dia-
grams.

Each use case diagram consist of one to many cases,
each includes the text describing the case. Each case can
be either a main case, an include case or an extend case.
The attributes include_id and extend_id allow the system
to store such information. Each requirement has one or
more problem statements. The entity Problem statement
includes the actual description of the goal in the form of
text. For each problem statement there are a number of
ontology charts. Each ontology chart has a title and a
domain as well as zero to many OCL statements used to
capture the business norms and one to many universals.
These are the notes of the ontology chart. Each of them
has a type, a label and can be associated with zero (if it is
the root note only) or two other universals.

The above schema is capable of capturing all the infor-
mation generated during the requirement analysis phase

Universals

-Id
-Type
-Ant1
-Ant2
-Label

Ontology_Chart

-title
-domain
-ID

Use_Case

-title
-domain
-ID

Case

-id
-text
-include_id
-extend_id

* 1

OCL

-id
-OCL_Statment
-Start_Time
-Finish_Time

*

1

Problem Statement

-id
-Statement
-Requirement_id

* 1

Requirements_table

-id
-goal
-priority
-stakeholder
-actor
-start_time
-finish_time
-confirmed

Dependences

-id
-parent_requirement_id
-child_requirement_id

* 1 * 1

1

0

*

*

Figure 3. Traceability repository structure.

Requirements Analysis and Traceability at CIM Level

Copyright © 2010 SciRes. JSEA

849

and retrieve them if required. It is also temporary as it
keeps history of changes and supports non-destructive
updates. It is therefore capable of enhancing Poernomo’s
2008 method with requirements traceability capabilities.
It is the author’s believe that such addition will improve
the requirements management capabilities of the selected
method and will provide a great tool for requirement
analysis and management at CIM level.

5. Case Study

5.1. The Business

A top tier international law firm offers many legal ser-
vices across a broad range of areas such as finance,
merger and acquisitions, employment and benefits, en-
ergy and infrastructures etc. to a vast number of clients.
The client and matter proceedings results in a big amount
of paperwork. All the documents are saved in different
profiles and a huge number of databases need to be util-
ised.

To deal with this problem in the past, the firm em-
ployed an IT solution based on profiling lotus notes. The
management has decided to change the technology by
upgrading to a new technology. The replacement of the
ABC Profiling Lotus Notes databases has been under
review for some years and different technology ap-
proaches have been discussed. The most recent technology
approach was a study conducted in 2008, which culmi-
nated in a Proof of Concept to prove that the majority of
ABC requirements could be encompassed into the, Beta
version of Sharepoint 2007. The main disadvantage of
this approach is the data in the databases has to be con-
verted to the new system format inheriting the risk of
destroying the sensitive data. Projects can now be built
upon this Proof of Concept and the Sharepoint seeks to
build a single replacement solution for the current Lotus
Notes databases and migrates the data into a new Share-
point 2007 application.

ABC has four Lotus Notes databases. In these data-
bases the relevant ABC team captures extensive profiling
information regarding their matters (i.e. legal transac-
tions or legal deals); this could be likened to extremely
detailed metadata. This profiling information is used for
legal precedents and is a critical part of ABC’s know-
ledgebase. Each profile can relate to a ‘bible’. A bible is
ABC's term for one or more key documents selected at
the end of a matter, which form crucial reference and
precedent information for legal transactions of a similar
nature going forward. Sometimes it is possible to capture
profile information when a bible has not yet been created,
but then reference the profile to the bible at a later date.
The proposed new solution for ABC Bibles Profiling will
allow a certain user group (Administration or Profile

User) to create and maintain profile information. The
General Users will then be able to search on this profile
information. All bible profile information can link into
any existing bibles that reside in the Document Manage-
ment System. This is an electronic repository of bibles held
within the Document Management System.

5.2. Organizational Onion and Goal Analysis

The organizational onion of this system is as shown in
Figure 4.

The system is the ABC Bibles and all the layers of the
“onion” are labelled with the right entity corresponding
to the relation engagement to the system. Closer to the
system are the users. The users have different access
rights. There are three different types of users Admini-
strations users, profile users and general users.

After the organization onion the Goal driven analysis
is conducted. Goals get extracted by the business owner
of the system. One example of Goal Analysis would be
General User which would search on the Profile for in-
formation. Figure 5 shows Goal Analysis of our chosen
case study of law firm.

5.3. Technical Requirements Table

The next stage is to populate the requirements of Table 2.
The Search Profile is dependent on Create Profile goal,

being so the Search Profile goal is of high priority as the
Create Profile since someone cannot search a profile
unless it has been created.

5.4. Problem Statement and Use Case

After the technical requirement table is created the prob-
lem statements are created for each goal identified in the
table. Below is an example of creating a new profile.

“Administrator users create new profiles. Every new
profile includes detailed information about the clients
and the legal case. This information consists of Client
name, Client Address, Client Litigation Party, Legal
Case description, Case Number, Involved parties. The
profile information needs to be linked to the document

ABC Bibles

User

Lawyer

IT Dept

HP

Lawyer’s Association

UK Government

Figure 4. Organisational onion.

Requirements Analysis and Traceability at CIM Level

Copyright © 2010 SciRes. JSEA

850

Perform Search

Maintain Access Rights Maintain Entering Search Criteria Maintain Viewing Search Results

Administrator General User General User

AgentGoal

Figure 5. Goal analysis.

Table 2. Case study’s technical requirements table.

Goal Dependencies Priority Owner Stakeholder Actor Start Time Finish Time Confirm

Create Profile N/A High Web Team Administrator User 1/10/2008 1/11/2008 yes

Search Profile Create Profile High IT Dept General User 1/11/2008 1/12/2008 yes

Grant Access N/A Medium User Admin Profile User 1/10/2008 1/10/2008 yes

management system in the back end. The profile has to
be linked with the document management system as to
relate the clients paperwork with the legal case paper-
work stored in the back end databases.”

Following the problem statement the use case is cre-
ated. The following use case diagram shows how the
profiles are created by the administrator user. (see Figure
6)

5.5. Ontology Charting

The ontology chart is created to depict affordances and
antecedents. The ontology chart could be used as the
input to transformation as to produce the Platform Inde-
pendent Models such as Class Diagrams, Components
diagrams etc. (see Figure 7)

The Requirements table, the problems statements, the
use cases and the ontology charts with the business
norms where automatically stored to the traceability
repository. This will now allow the analysts to trace the
life of any requirement, assuming that the business ana-
lyst wants to change an existing requirement. This can be
achieved by updating it the goal in the requirements table.
The old goal will be kept in the repository. The user will
then be required to perform the appropriate changes to
the problem statement, the use case, the ontology charts
and the business norms. Once this is completed the
traceability repository will not destroy the old entities. It
will put a finish time on them and let them be creating

Figure 6. Create profile use case.

Figure 7. Create profile ontology chart.

Requirements Analysis and Traceability at CIM Level

Copyright © 2010 SciRes. JSEA

851

new entities and associating the appropriate rows of data
with them. After all the updates are finished the software
system will be able to be regenerated with the use of the
latest data, such as the latest ontology chart and norms by
the use of the MDA framework.

6. Conclusions and Future Work

This project reviewed all the major methodologies for
requirements analysis, MEASUR, Goal Analysis, Object
Oriented Analysis as well as a methodology that com-
bines all of them and can be integrated within the MDA
framework. The last was selected and applied to the case
study from a law firm. The method was also enhanced
with a requirement traceability repository that allowed
analyst to store, trace and modify user’s requirements.

For future work the requirements traceability system
can be developed and integrated within an industry stan-
dard tool such as eclipse. Additional search functionality
that will allow the system to search models for similari-
ties would also be welcomed. Last both the method and
the requirements traceability mechanism need to be test
on more case studies.

REFERENCES

[1] M. Roper, “Software Testing,” ACM Computing Surveys,
Vol. 23, 1994, p. 103.

[2] R. Wieringa, “A Survey of Structured and Object-Oriented
Software,” 1998. http://portal.acm.org/citation.cfm

[3] V. Schlag, Patrick Certification Magazine, Vol. 8, No. 9,
September 2006, pp. 30-35.

[4] “OMG, MDA Guide Version 1.0.1,” 2000. http://www.
omg.org/docs/omg/03-06-01.pdf

[5] I. Poernomo, G. Tsaramirsis and V. Zuna, “A Methodol-
ogy for Requirements Analysis at CIM Level,” 2008.
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-376/paper2.pdf

[6] V. Castro, J. M. V. Mesa, E. Herrmann and E. Marcos,
“From Real Computational Independent Models to In-
formation System Models: An MDE Approach,” Pro-
ceedings of the 4th International Workshop on Model-
Driven Web Engineering, Tolouse, 2008.

[7] O. Gotel and A. Finkelstein, “An Analysis of the Re-
quirements Traceability Problem,” Proceedings of 1st In-
ternational Conference on Requirements Engineering,
Vol. 11, 1994, pp. 94-101.

[8] A. Salter and L. Kecheng, “Using Semantic Analysis and
Norm Analysis to Model Organizations,” Proceedings of
International Conference on Enterprise Information Sys-
tems, Vol. 3, 2002, pp. 1-7.

[9] T. Philip, G. Schwabe and E. Wende, “Early Warning
Signs of Failures in Offshore Software Development
Projects,” Management Services, Vol. 51, No. 3, 2007, pp.
38-43.

J. Software Engineering & Applications, 2010, 3, 852-857
doi:10.4236/jsea.2010.39099 Published Online September 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

A Review of the Impact of Requirements on
Software Project Development Using a Control
Theoretic Model

Anthony White

School of Engineering and Information Sciences, Middlesex University, the Burroughs, Hendon, London, UK.
Email: a.white@mdx.ac.uk

ABSTRACT

Software projects have a low success rate in terms of reliability, meeting due dates and working within assigned budg-
ets with only 16% of projects being considered fully successful while Capers Jones has estimated that such projects
only have a success rate of 65%. Many of these failures can be attributed to changes in requirements as the project
progresses. This paper reviews several System Dynamics models from the literature and analyses the model of Andersson
and Karlsson, showing that this model is uncontrollable and unobservable. This leads to a number of issues that need to
be addressed in requirements acquisition.

Keywords: Requirements Models, System Dynamics, Control Systems, Observability, Controllability

1. Introduction

Software projects have a low success rate in terms of
reliability, meeting due dates and working within as-
signed budgets [1-3] with only 16% of projects being
considered fully successful while Capers Jones has esti-
mated that such projects only have a success rate of 65%.
The American “Standish Group” has been involved for
10 years with research into ICT. In their research, they
aim to determine and change success and failure factors
regarding such projects. Their study, which has been
appropriately baptised “Chaos” [4,5], appears every two
years. This study also shows that in 2003 only 34% were
successful, 51% did not go according to plan but ulti-
mately did lead to some result and 15% of the projects
fail completely.

Despite these failures significant progress has been
made in the use of System Dynamics methods to describe
the development of software projects. The models of
operation of the software development process were de-
scribed by the successful System Dynamics (SD) models
based on the work of Abdel-Hamid & Madnick [6],
which set up equations relating levels such as the number
of perceived errors, or the number of reworked errors
and relates them to rates such as the error detection rate
or the rework rate, significant features of these models
included the decision processes. These models were
validated against NASA project data for a medium size

project and the agreement is strikingly good.
Many of these failures can be attributed to changes in

requirements as the project progresses. Capers–Jones [7]
states that as the project gets larger the probability of
requirements creep becomes more likely, typically 1-2%
per month and as high as 10% in a single month. Lorin
May [8] talks about poorly established guidelines that
determine when requirements should be added, removed
and implemented. Deifel and Salzmann [9] describe a
view of “requirements dynamics” relating to the process
of changing requirements. They go on to develop a
strategy to deal with the regime in which some require-
ments are invariant and some migrate.

Coulin et al. [10] state that “the elicitation of require-
ments for software systems is one of the most critical and
complex activities within the development cycle” and
that “this is preformed after project initiation and pre-
liminary planning but before system conception and de-
sign.” This would not be strictly true if evolutionary or
iterative methods were used. The later the requirements
in the cycle of development change, the more costly is
that revision (Boehm & Pappacio [11]). It is certainly the
case as Hoorn et al. [12] report that owing to many shifts
in focus and priorities, stakeholders become inconsistent
about what they actually want to accomplish with the
system. If we are to improve the requirements process
then proper models of a process are needed. Kotanya &

A Review of the Impact of Requirements on Software Project Development Using a Control Theoretic Model

Copyright © 2010 SciRes. JSEA

853

Sommerville [13] outlines the requirements engineering
process as shown in Figure 1. Although there is feed-
back between requirements validation and specification
and in the elicitation and specification as will be shown
this is not represented in the current models. It is not
clear in any of the texts on the subject whether the in-
volvement of the use is mandated at these stages.

The whole purpose of this paper is to present simple
control system models of the project development process
including requirements, as in inventory analysis, and
demonstrate rules for stability.

2. System Dynamics

Wolstenholme [14] describes System Dynamics as:
“A rigorous method for qualitative description, explo-

ration and analysis of complex systems in terms of their
processes, information, organizational structure and
strategies; which facilitates simulation modelling and
quantitive analysis for the design of system structure and
control”.

This definition is expanded in Table 1 taken from
Wolstenholme.

The SD model structure is highly non-linear with a
number of theoretical assumptions, for example about
how the errors in the coding are propagated.

These structural assumptions do not allow for System
Dynamics models to enable any general rules to be de-
veloped by academics for managers to make sound
judgments based on good analysis. The distinction with
models of inventory processes, which are related, is the
rationale for this research program. Early SD invent-

tory models developed by Forrester [15] were also
non-linear and contained a number of factors, such as
employment rate, that made the problem too complex for
simple rules to be developed.

The simplest expression of representation of require-
ments in SD models is that use by Madachy [16], shown
in Figure 2. In this case requirements are added to by a
rate of generation, usually constant. The time taken to
acquire the whole requirements is dictated by the acqui-
sition rate. Häberlein [17] proposed a different structure
for the development of the whole project. In his model
(Figure 3) the rate of generation of requirements is split
into several phases depending on the comprehension of
the supplier and how this is influenced. This model could
show considerable promise but no equations are pre-
sented. The model of Williams [18] (Figure 4) could not
be evaluated further at this time due to incomplete equa-
tions. The structure indicated shows dependence on
quantities such as customer satisfaction that are not read-
ily measured during the process. The model of Anders-
son and Karlsson [19] (Figure 5) is the most complete
and useful model out in the literature. Not only are all the
equations given, with data, but the results are of a project
in industry. This model shows that the process of gaining
requirements is split into a phase where the level of re-
quirements tasks to be completed is gained via an input
pulse function. The required tasks to be completed are
fed from the previous state by a constant requirements
completion rate. Rework is discovered in these require-
ments and this is fed back at a constant rate to the first
level. Inadequate requirements are discarded at a rate that

Figure 1. Requirements engineering (from Kotanya & Sommerville).

A Review of the Impact of Requirements on Software Project Development Using a Control Theoretic Model

Copyright © 2010 SciRes. JSEA

854

Table 1. System Dynamics a subject summary from Wolstenholme [14].

Qualitative system dynamics Quantitative system dynamics

(diagram construction and analysis phase) (Simulation phase)

 Stage 1 Stage 2

1. of existing/proposed systems
1. To examine the behavior of all system
variables over time.

2. To create and examine feedback loop
structure

3. To provide a qualitative assessment of the
relationship between system process struc-
ture, information structure, delays organiza-
tional structure and strategy

2. To examine the validity and sensitivity of
the model to changes in

 Information structure
 Strategies
 Delays and uncertainties

1. To examine alternative system structures and
control strategies based on

 Intuitive ideas
 Control theory analogies
 Control theory algorithms: in terms of

non-optimizing robust policy design

Figure 2. Raymond Madachy’s model.

Figure 3. Requirements as a total process in comparison to
Abdel-Hamids’ task based mod.

Figure 4. Requirements model of Williams [17].

is also a constant’. The final finished requirements are
fed by a finished requirements rate. A number of
non-linear “constants” are embedded into the system. No
proper validation is made of this model or any of the
models given here (this is normally very difficult).

A Review of the Impact of Requirements on Software Project Development Using a Control Theoretic Model

Copyright © 2010 SciRes. JSEA

855

Figure 5. The model of Andersson and Karlsson [18].

Do any or all of these models match the published
material on requirements engineering? In the broadest
sense, yes, they do match what is contained in books
such as Sommerville. To make further progress let us
assume that the Anderson and Karlsson model is correct.
This non-linear SD model has been linearised and ana-
lysed using control theory to see any general lessons can
be learned.

3. Control Analysis

Part of the simplification of the Project Model is being
tackled in the USA by the newer control system models
of software testing (Cangussu et al. [20]) and the ap-
proach to control of software development by White
[21].

In this case the model of Andersson and Karlsson was
linearized and the following state equations obtained:

drttbc
crr rcr rw

dt
   (1)

drtc
rcr frr rw irr

dt
    (2)

dir
irr

dt
 (3)

dfr
frr

dt
 (4)

The linearized auxiliary SD equations are:

 crr fi t (5)

(where this is a pulse of height fi, the initial estimate of
the number of requirements).

rcr rprod (6)

rtt
irr rtc

rp

 
  
 

 (7)

 rw rwp rtc (8)

1
rtt

frr rwp rtc
rp

 
   
 

 (9)

These equations can be represented by a state-space
equation

x Ax Bu B v

y Cx Du

  
 

 (10)

where A, B and B' are given by:

0 0 0

0 1 0 0

0 0 0

0 1 0 0

rwp

rtt rtt
rwp rwp

rp rp

rtt

rp

rtt
rwp

rp

 
 

             
 
 
 
 

  
 

A  (11)

0

0

0

fi 
 
 
 
 
 

B  (12)

1

1

0

0

 
 
 
 
 
 

B  (13)

A Review of the Impact of Requirements on Software Project Development Using a Control Theoretic Model

Copyright © 2010 SciRes. JSEA

856

 0 0 0 1C  (14)

D  (15)

rttbc

rtc

ir

fr

 
 
 
 
 
 

x  (16)

where u = pulse function and v = rprod. In this configu-
ration v acts as a disturbance.

State-space theory can be used to see if this system is
either controllable or observable.

We can define two matrices that will allow a measure
of these properties if they are both full rank. The control
stability is defined by the four eigenvalues two zero and
two damped complex conjugates. The system is neutrally
stable at best.

  
2 3Cm = B AB A B A B (17)

The rank of Cm is 1! The observability is given by:

 
 
 
 
 
 

2

3

C

CA
Om =

CA

CA

 (18)

The rank of this matrix is also 1. This means that the
system described by the linearized state equations is un-
controllable and unobservable! The principle reason for
this is that no corrective forces exist to alter the rate of
production of requirements and that the rework and in-
adequate requirements cannot be altered independently
of each other. Although a set of parameters will allow the
requirements to be produced, once set in train no process
exists to vary that process. No variation in workforce for
example is set up in this model. No simple solutions
allow this model to be put into a controllable form, al-
though it can be made observable.

4. Conclusions

All the SD models illustrated here would appear to use a
constant rate of conversion of requirement wishes from
the customer to specifications, depending strictly on staff
productivity. The number of staff in the cases cited
appears to be fixed at the start of the process and altered
only reluctantly, taking no account of project size or
complexity. If this is generally true it has severe implica-
tions for the later analysis and development of the project.
The most comprehensive model cited, due to Andersson
and Karlsson has been analysed from a control system
viewpoint. This analysis shows that such models are
neutrally stable since there are no feedback mechanisms

to establish when all the requirements are obtained, and
they are neither controllable nor observable. The problem
is that only the group of states fr, ir and rtc together are
specified, one of them cannot be separately described or
made to achieve a particular trajectory If the staff pro-
ductivity is fixed and the number of staff is decided be-
forehand then the final outcome is proscribed. They can
with some manipulation be made stabilizable.

REFERENCES

[1] J. Smith, “The 40 Root Causes of Troubled IT Projects,”
Computing and Control Journals, June 2002, pp.109-112.

[2] K. T. Yeo, “Critical Failure Factors in Information Sys-
tem Projects,” International Journals of Project Man-
agement, Vol. 20, 2002, pp. 241-246.

[3] Royal Academy of Engineering, “The Challenges of
Complex IT projects,” Report of working group of RAE
and BCS, 2004.

[4] The Standish Group International Inc., Standard Group
CHAOS Report. 1998

[5] The Standish Group International Inc., Standard Group
CHAOS Report, 25 March 2003

[6] T. Abdel-Hamid and S. E. Madnick, “Software Project
Dynamics: An Integrated Approach,” Englewood Cliffs,
Prentice Hall, New York, 1991.

[7] C. Jones, “Large Software System Failures and Suc-
cesses,” American Programmer, April 1996, pp.3-9.

[8] L. J. May, “Major Causes of Software Project Failures,”
Crosstalk, July 1998.

[9] B. Deifel and C. Salzmann, “Requirements and Condi-
tions for Dynamics in Evolutionary Software Systems,”
Proceedings of the International Workshop on the Prin-
ciples of Software Evolution, IWPSE99, Fukuoka, 1999.

[10] C. Coulin, D. Zowghi and A. Sahraoui, “A Situational
Method Engineering Approach to Requirements Elicita-
tion Workshops in the Software Development Process,”
Software Process Improvement and Practice, Vol. 11, No.
5, 2006, pp.451-465.

[11] B. Boehm and P. N. Pappacio, “Understanding and Con-
trolling Software Costs,” IEEE Transactions on software
engineering, Vol. 14, 1988, pp.1462-1477.

[12] J. F. Hoorn, M. E. Breuker and E. Kok, “Shifts in Foci
and Priorities. Different Relevance of Requirements to
Changing Goals Yields Conflicting Prioritizations and Its
Viewpoint,” Software Process Improvement and Practice,
Vol. 11, No. 5, 2006, pp. 465-485.

[13] G. Kotonya and I. Sommerville, “Requirements Engi-
neering Processes and Techniques,” Wiley, 1988.

[14] E. Wolstenholme, “A Current Overview of System Dy-
namics,” Transactions on Institute MC, Vol. 114, No. 4,
1989, pp. 171-179.

[15] J. Forrester, “Industrial Dynamics,” MIT press, Boston,
1961.

A Review of the Impact of Requirements on Software Project Development Using a Control Theoretic Model

Copyright © 2010 SciRes. JSEA

857

[16] R. Madachy and B. Khoshnevis, “Dynamic Simulation
Modeling of an Inspection-Based Software Lifecycle
Process,” Simulation, Vol. 69, No.1, 1997, pp.35-47.

[17] T. Häberlein, “Common Structures in System Dynamics
Models of Software Acquisition Projects,” Software Pro-
cess Improvement and Practice, Vol. 9, No. 2, 2004, pp.
67-80.

[18] D. Williams, “Challenges of System Dynamics to Deliver
Requirements Engineering Projects: Faster, Better, Cheaper,”
21st System Dynamics Conference, New York, 2003.

[19] C. Andersson and L. Karlsson, “A System Dynamics
Simulation Study of a Software Development Process,”
Lund Institute of Technology Report, March, 2001.

[20] J. W. Cangussu, R. A. DeCarlo and A. P Mathur, A For-
mal Model for the Software Test Process, IEEE Transac-
tions on Software Engineering, vol. 28, no.8, August
2002, pp.782-796.

[21] A. S. White, “Control Engineering Analysis of Software
project Management,” BCS SQM Conference, Stafford,
Section 3, April 2007.

Symbols

Crr Customer requirements rate
fi Initial value of requirements assumed
fr finished requirements
frr finished requirements rate
ir Inadequate requirements
irr inadequate requirements rate
rtc Requirement Tasks Completed

rcr requirements completed rate
rp requirement part
rprod requirement productivity
rtt fraction of tasks inadequate
rttbc Requirement tasks to be completed
Rw rework rate
Rwp rework fraction of RTC

J. Software Engineering & Applications, 2010, 3, 858-868
doi:10.4236/jsea.2010.39100 Published Online September 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

IT Project Environment Factors Affecting
Requirements Analysis in Service Provisioning
for the Greek Banking Sector

Krikor Maroukian

Printec Group of Companies, Athens, Greece.
Email: K.Maroukian@printecgroup.com

ABSTRACT

The research undertaken within a Greek IT organisation specialising in service provisioning to the Greek banking sec-
tor discusses the various aspects of a number of identified environment factors within five distinct IT projects which
affect the requirements analysis phase. Project Management (PMBOK® Guide 4th ed.), IT Service Management (ITIL®
v3) and Business Analysis (BABOK® Guide 2.0) framework practices applied to the various IT projects are highlighted
in regard to improved activity execution. Project issue management, stakeholder management, time management, re-
sources management, communication management and risk management aspects are presented. These are then linked
to the identified environment factors so as to indicate the adaptability of an IT support team to changing environment
factors in IT project environments and how the fulfilment of these factors can significantly contribute to effective re-
quirements analysis and enhance the requirements management cycle.

Keywords: Requirements Analysis, Project Management, IT Service Management, Business Analysis, Greek Banking

Sector

1. Introduction

International transaction systems have grown rapidly in
the past decade, servicing more efficiently an ever grow-
ing number of debit and credit card holders throughout
the world. Telecom Point-of-Sale (POS) devices offer an
extended prism of services to cardholders in their daily
purchase transactions. The Greek banking sector having
sustained for many years the POS market, has now
reached a high maturity level. This has enabled banking
institutions to set a vision in terms of acquiring new
technologies such as POS devices with embedded GPRS
or Wi-Fi capabilities. It also means that suitable telecom
network and IT infrastructure is established whereby
POS management systems provide the required everyday
service from banks to merchants and ultimately the
cardholders. Requirements analysis is of significant im-
portance in IT projects undertaken to support the POS
management system environments that are currently in-
stalled at various banking institutions within Greece. As
a consequence, it is the primary aim of this paper to in-
vestigate and identify the project environment factors
that affect the requirements analysis phase in the Greek
banking sector, through a series of five IT projects with

distinct characteristics each, carried out by a POS man-
agement systems Support Team acting as part of Printec
Group’s Software R & D Division.

1.1. Background

The research paper focuses on the various issues faced in
the requirements analysis during the service design, ser-
vice transition and service operation execution of five
large to medium-scale IT projects undertaken within the
Greek banking sector. The primary deliverable of all
projects was the deployment of a POS or Terminal Man-
agement System (TMS) within five Greek banks, three of
them forming part of the four largest banking establish-
ments within the Greek banking market. Services are the
means of delivering value to customers by facilitating
outcomes customers want to achieve, without the own-
ership of specific costs and risks [1]. Moreover, there is
extensive reference on the various methodologies and
practices employed towards client requirements identifi-
cation, categorisation and dissemination of information
to other corporate teams and the effect of this analysis on
project deliverables. The paper also discusses the estab-
lished practices which aided the overall process of re-

IT Project Environment Factors Affecting Requirements Analysis in
Service Provisioning for the Greek Banking Sector

Copyright © 2010 SciRes. JSEA

859

quirements management. Four teams were highly in-
volved in the IT projects undertaken. These consisted of
the TMS implementation and support team, the TMS
development team of Printec Group Software R&D Di-
vision and the Printec Greece e-Payments Department
teams of POS application development and POS Help-
desk; a subsidiary of Printec Group. Teams from Printec
Group reported to the Steering Committee and both had
an individual appointed at a managerial role. The Steer-
ing Committee consisted of the Software R&D Division
Director and the Group General Manager. The Printec
Greece e-Payment Department POS Helpdesk and POS
Development teams were headed by the Technical Su-
pervisor and the Head of Software Engineers.

1.2. Project Management Plans

The aim of IT projects undertaken was to install or up-
grade the TMS software for five banking institutions. An
eighteen month period covered the entire duration of the
five executed IT projects starting from May 2008 and
lasting till November 2009, see Table 1. Notice that all
project implementations refer to system upgrades except
for Sigma Bank which resulted to a fresh installation of
TMS at Printec Greece premises.

Printec Group’s IT service provisioning to the five
banking institutions can be further divided into areas
such as POS management, merchant management, POS
issue management, reports management and client spe-
cific business needs. In addition, the client’s point of
contact with Printec Group’s internal software develop-
ment department was the TMS support team. Therefore,
the TMS implementation and support team was respon-
sible for highlighting or escalating any issues or re-
quirements that might arise regarding client needs. Soon
it became apparent that healthy relationships between the
client and the IT services supplier when maintained,
through good professional practices such as regular
communication updates on current issues faced, post-visit

reporting on decisions reached, issue response and reso-
lution or simply updates on a new product release, can
result in higher client utility and improved practice in the
requirements capture activity.

2. Project Management, Service
Management and Business Analysis
Frameworks for Requirements Analysis
in the Greek Banking Sector

From the very beginning of the IT projects, it was real-
ised that a defined period for requirements identification
cycle would ensure that all client requirements would be
recorded as part of the documentation practices already
established within Printec Group. These would be taken
into full consideration by all involved stakeholders for
the release of the new TMS software [2]. Identification
of business and user requirements was directly related to
functional and non-functional requirements. Functional
requirements relate to the scope of work or functionality
the software must have whereas non-functional require-
ments refer to look and feel, usability, performance, se-
curity and maintainability and support requirements of
the software [3].

Moreover, maintaining an up to date set of require-
ments gained significant priority and became a crucial
aspect of applied IT project management practices. It was
important that all stakeholders of the TMS support and
software development teams had a perfectly aligned per-
ception of what the client required so as to avoid a mis-
conception of expressed client requirements.

2.1. Applied Requirements Analysis and
Business Analysis Practices and
Methodologies

The requirements analysis process refers mainly to re-
corded and accepted requirements that will form part of
project deliverables. The acceptance stage can be con-

Table 1. Project management plans duration for five IT projects in the Greek banking sector.

Bank Project Start Date
Project End

Date
Service Delivery

Duration (months)
TMS version

Beta Bank 5/5/2008 14/02/2009 9¼ Upgrade TMS6TMS7

Gamma Bank 7/7/2008 18/12/2008 5 Upgrade TMS7New version of TMS7

Delta Bank
7/11/2008-25/11/2008 &

20/05/2009-25/8/2009
25/8/2009 3¾ Upgrade TMS7New version of TMS7

Sigma Bank 23/4/2009 11/05/2009 ¾ Install TMS7

Omega Bank 25/5/2009 24/11/2009 6 Upgrade TMS6TMS8

IT Project Environment Factors Affecting Requirements Analysis in
Service Provisioning for the Greek Banking Sector

Copyright © 2010 SciRes. JSEA

860

ducted under the auspices of a formal meeting with the
client during which essential business requirements are
discussed, recorded and timelines of service delivery
provided to the client by senior management. Later on,
the agreed requirements to be implemented and timelines
should be communicated to all project stakeholders so
that organisational efforts for the release of the new TMS
software are aligned according to specifications. In effect
the purpose of the requirements analysis process is to
establish which requirements have been identified, the
case of whether there needs to be provided clarification
in regard to a requirement and finally accept the imple-
mentation of the necessary software development to re-
lease the new software product which would fully con-
form to client requirements. Three processes were identi-
fied throughout the requirements analysis process as the
key ingredients to best practice. These are the Require-
ments Identification, Requirements Categorisation and
Requirements Prioritisation. It was made clear that there
was a set of requirements to which the client agreed upon
a formal meeting with Printec’s senior management and
that there was flexibility in new requirements to be ac-
cepted after a new release had been scheduled and im-
plemented in terms of establishing an independent pro-
ject altogether to implement these new requests.
Firstly requirements capturing or identification proce-
dures were established whereby client requirements were
identified as follows:

1) Senior management buy-in for the project indicated
strong commitment from Printec Group’s side to the re-
quirements analysis process;

2) Enquiries and incident logging through the Service
Desk;

3) Frequent formal visits to the bank’s site;
4) The use of a coherent vocabulary or common glos-

sary among Printec Group and bank employees was in-
strumental towards an improved understanding of re-
quirements identification;

5) A requirements identification period resulted to im-
proved requirements capture and a better understanding
of the software functionality the client was expecting to
receive.

Secondly the requirements categorisation process re-
fers to identifying the software component or module to
which a requirement refers. There were two types of re-
quirements in regard to resource allocation to tasks for
their implementation. Those that could be handled by the
support team and those that had to be escalated to the
software development team. Resource allocation to tasks
was managed through the issue management system. In
addition, requirements categorisation can be carried out
having in mind functional and non-functional require-

ments. Functional requirements describe the functionality
of a system. These are sometimes known as software
capabilities. On the other hand, non-functional require-
ments act to constrain the solution and can be referred to
as constraints or quality requirements. In fact, non-func-
tional requirements can be further classified according to
whether they are performance requirements, maintain-
ability requirements, security requirements or reliability
requirements.

In addition to categorisation of requirements the estab-
lished issue management system within Printec Group
assisted in the prioritisation of what requirements re-
quired immediate implementation in the new software
release and which ones could be implemented in a later
software release. Within Printec Group the following
points were considered important prioritisation criteria:

1) Importance of requirement to client satisfaction. In
effect this is what the client expressed as necessary to
sign off user acceptance testing and eventually project
implementation;

2) Criticality of requirement in client production envi-
ronment; This attributes to the severity of implications
caused in the client production level if the requirement
was not implemented;

3) Capability of re-tracing previously documented re-
quirements for re-use;

4) Resource allocation to requirements tasks;
5) Cost of implementation per requirement.
Note that there are certain challenges associated with

requirements prioritisation which need to be carefully
considered as defined in BABOK® [4]:
 Non-negotiable demands whereby the client is un-

willing to commit to any trade-offs and ranks all
requirements as high priority;

 Unrealistic tradeoffs whereby the service pro-
vider’s solution development team may intention-
ally or unintentionally try to influence the result of
the prioritisation process by overestimating the re-
quirements implementation complexity.

Subsection 2.2 refers to project management practices
established for Beta Bank, Gamma Bank, Delta Bank and
Omega Bank. In the Sigma Bank case, the installation of
the TMS software was outsourced. Therefore TMS was
deployed at the Printec Greece premises thus mitigating
the execution of the requirements analysis process to the
Printec Greece-e-Payments Department POS Helpdesk
team which in turn collaborated with Sigma Bank - Cards
Division officials. The mental mismatch model can be
also considered for the Sigma Bank TMS deployment
project, see Subsection 3.1.4, in a slightly different stake-
holders’ context but always indicating the necessity to
cater for misconception of expressed client requirements

IT Project Environment Factors Affecting Requirements Analysis in
Service Provisioning for the Greek Banking Sector

Copyright © 2010 SciRes. JSEA

861

between various parties and teams as shown in Figure 1.

2.2. Applied Project Management and Service
Management Practices and Methodologies

Τhe TMS implementation and support team performance
was constantly measured through Key Performance In-
dicators (KPI) which indicated that most of the time all
issues were resolved and whenever serious issues arose
with high business impact these were escalated to the
TMS development team to address the issue in software
development terms. Some of the frequently monitored
and reported KPIs include, issues closed at first call at
the Service Desk, issues closed after second level support
consultation, average time per call per analyst, issues
escalated for third level support to TMS software devel-
opment and POS software applications development
teams. In effect, there was usually a small backlog of
client issues relating to TMS installations which made it
possible to counteract more effectively to newly reported
issues.

Throughout the duration of the IT project the senior
management style was consultative whereby decisions
were taken by seeking the opinions and views of the
teams prior to a decision being made [5]. However final
decisions lied solely in the judgment of the Steering
Committee. Furthermore, knowledge transfer on TMS

usability matters from the development team to the sup-
port team was vital. This was conducted through formal
and informal meetings, online material and communica-
tion, computer based training (CBT) and constant in-
volvement to client issue resolution.

An established Service Desk operating according to
ITIL specifications, was utilised to control and monitor
TMS support performance levels. In particular, it was
decided who would take responsibility of escalating is-
sues to the development team, aligning client site TMS
software items with Printec Group’s TMS related con-
figuration items (CI) and who would trigger and organise
formal team meetings. Moreover, work delegation was
essential in assigning tasks to resources by taking into
consideration resource availability and the individual’s
expertise on the different functionality aspects of TMS.
In this way incident response timeframes to the client
would be minimised. Performance reporting to the
Steering Committee was essential. This involves collec-
tion and distribution of performance information to pro-
ject stakeholders [6].

The established flow of information and client re-
quirements identification to escalation management re-
quired the TMS Support team members be at the heart of
the process as depicted in Figure 2. Notice that the
Steering Committee and Software Development team, at

Figure 1. The mental model mismatch for the Sigma Bank-TMS deployment project.

Figure 2. Printec Group-Software R & D Division communications mapping with clients.

IT Project Environment Factors Affecting Requirements Analysis in
Service Provisioning for the Greek Banking Sector

Copyright © 2010 SciRes. JSEA

862

exceptional cases, had to be involved in the ΙΤ support
process with the client. This occurred due to the fact that
certain requirements had to be clarified in technical terms
to avoid ambiguity so as implementation and the end
result was exactly what the client requested initially. In
addition, this also occurred in situations when senior
management had to engage in the decision making proc-
ess with the client or even to schedule high profile meet-
ings. In fact, decisions or agreements reached in collabo-
ration with Printec Group’s senior management would
indicate higher commitment to the TMS project from the
client side.

2.2.1. Established Service Desk
The implementation of the Service Desk for the TMS
support team entailed the recording of landline incom-
ing/outgoing telephone communications. This was
achieved by monitoring and responding to all outstanding
activities/requests/complaints, creating and maintaining a
Known Error Database (KED) and reporting on a
monthly basis to the Software R & D Division Director
on TMS support productivity and efficiency.

The established Service Desk within the TMS support
team served as a technique for capturing and recording
client requirements

2.2.2. Issue Reporting and Statistics Provision
A suitable frequency of reporting and review was estab-
lished, depending upon the importance of the review.
Providing results in graphical form is useful for present-
ing management overviews on major areas of interest [7].
To provide a common service objective, it was important

that all TMS stakeholders were aware of major issues,
concerns, performance levels and achievements of the
entire Software R & D Division and not just their team.
Table 2 below, shows the monthly performance statistics
produced for the Director of the Software R & D Divi-
sion by the owner of the TMS Support Service Desk.

3. Investigation of Environment
Factors—Five Case Studies in the Greek
Banking Sector

This chapter presents a discussion on each of the five IT
projects the Printec Group TMS support team embarked
on and unravels the factors that affected the requirements
analysis phase which in turn resulted in delays or im-
provements to project timeframes. The case studies are
presented in time sequence as they occurred throughout
an eighteen month period.

The requirements analysis and business analysis (BA-
BOK®) procedures implemented by the TMS support
team have been previously described see Subsection 2.1.
Project Management (PMBOK®) and IT Service Man-
agement (ITIL® v3) framework practices have been
thoroughly described in Subsection 2.2.

3.1. Terminal Management System Deployment
Projects for Five Banking Institutions within
Greece

Each project presented in this section carries a different
set of characteristics which distinguishes it from the rest
in terms of size of client organisation, applied corporate

Table 2. Monthly performance statistics of the TMS support service desk.

 Total issues % Change Resolved issues %

September 2008 25 0.00% 24 96.00%

October 2008 27 7.41% 24 88.89%

November 2008 30 10.00% 29 96.67%

December 2008 30 0.00% 28 93.33%

February 2009 29 –3.45% 28 96.55%

March 2009 28 –3.57% 26 92.86%

May 2009 27 –3.70% 27 100.00%

Jun-Jul 2009 13 –107.69% 13 100.00%

Aug - Sep 2009 19 31.58% 18 94.74%

Sep- Oct 2009 17 –11.76% 16 94.12%

Nov 2009 15 –13.33% 14 93.33%

IT Project Environment Factors Affecting Requirements Analysis in
Service Provisioning for the Greek Banking Sector

Copyright © 2010 SciRes. JSEA

863

IT policies, IT resources and human resources availabil-
ity, project complexity, issue management, demand
management, scope management, time management and
financial management (project budget). The projects un-
dertaken for the Greek banking sector are presented be-
low in chronological order, see Table 3. It is clear that
the project engaged with the largest banking institution,
Beta Bank, faced the highest number of issues requiring
resolution. In the ITIL context these can be classified as
incidents or problems. In case problems arose the appro-
priate changes were requested and upon approval of the
Change Advisory Board (CAB) a new TMS release was
scheduled with a problem resolution patch. Moreover,
the organisation criticality category describes the vitality
and business operations impact each customer represents
to Printec Group as a business customer. For example,
Table 3 shows that Beta Bank is considered to be a stra-
tegic customer of Printec Group and therefore any inci-
dents or problems arising from any Beta Bank project
require additional attention in accordance to the customer
specific Service Level Agreement (SLA). Project com-
plexity refers to the level of bureaucratic processes put in
place by the customer, customer decision making time

and processes on expression of customer requirements,
time of response to service provider requests and in gen-
eral elements that might materialise risks which will
translate, as a consequence, in terms of project delays.
Lastly, the number of tasks assigned per project was
similar in all five case studies as shown in Table 4.

Note that throughout the duration of the five case stud-
ies a project manager was working in conjunction with
the TMS implementation and support team so as both the
service provider and the customer complied with the
agreed project plan and project schedule. The assignment
of tasks to individuals supported the need of task owner-
ship. In this way individual responsibility for the com-
pletion of tasks on-time and within project scope was
encouraged.

3.1.1. Beta Bank
The first project for the deployment of TMS at the Beta
Bank premises, the largest banking institution within
South-Eastern Europe, started in May 2008 and lasted till
February 2009. With an approximate duration of nine
months and thirty-six reported issues, see Figure 3, it
was the largest and most complex project of all. High

Table 3. TMS deployment project characteristics for five banking institutions within Greece.

Bank
Completion

Duration (months)
Project Issues

Organisational
Criticality

Project
Complexity

% of Tasks
Completed

Beta Bank 9 36 High High 100%

Gamma Bank 5 16 Medium Medium 100%

Delta Bank 3¾ 11 Medium Medium 100%

Sigma Bank ¾ 6 Low Low 100%

Omega Bank 6 11 Medium High 100%

Table 4. A standard TMS deployment project schedule.

Task
Completion

Duration (days)
Owner

Project kick-off meeting 0 Software Support Engineers, Project Manager

Requirements Analysis 5 Software Support Engineers, Project Manager

Data migration from old to new system 15 Software Support Engineer 1

Setup of User Acceptance Testing (UAT)
environment at client site

15 Software Support Engineer 2

Testing at client site 5 Software Support Engineer 2

UAT sign-off and software activation in
production

2 Software Support Engineer 1, Project Manager

IT Project Environment Factors Affecting Requirements Analysis in
Service Provisioning for the Greek Banking Sector

Copyright © 2010 SciRes. JSEA

864

Figure 3. Recorded issue rate per day throughout the duration of all five projects.

project complexity resulting to project timeframe delays
existed due to several reasons as described below:

1) High issue reporting rates, see Table 3, meant that
TMS support and TMS Development team members had
to first resolve the issues so as to progress through the
project management plan;

2) Numerous change requests to project requirements
and thus deliverables during the User Acceptance Testing
stage. In general, software development at this stage en-
tails high costs;

3) Numerous confirmation requests for undocumented
TMS workflow which meant that Printec Group’s Intel-
lectual Property had to be preserved while satisfying cli-
ent requests;

4) TMS administrators were constantly seeking reas-
surance on system management matters;

5) Constant requests for additional training provision;
6) The large size of corporate POS Helpdesk and POS

Faults Departments resulted in scheduling requests for
additional training sessions;

7) Beta Bank being a high-profile client meant that no
trade-offs could be made during the requirements analy-
sis phase. Without any ground to negotiate identified
requirements implementation there is additional risk on
the service supplier side during service delivery.

In addition, the prolonged requirements analysis pe-
riod, at the beginning of the project, was beneficial in the
sense that certain requirements were well defined and a
good understanding of their implementation was ac-
quired. However, the prolonged period of service design,
service transition and service delivery in general, had a
serious impact on project constraints e.g. extended pro-

ject duration and contributed to higher project complex-
ity as well.

3.1.2. Gamma Bank
The second project for the deployment of TMS at
Gamma Bank premises, the third largest Greek banking
institution within Greece, started in July 2008 and lasted
till December 2008. With an approximate duration of
five months and sixteen reported issues, see Figure 3, it
was the third largest and complex project of all. Medium
project complexity resulting to project timeframe delays
existed due to the following reasons:

1) Established IT security corporate policies meant
that several authorisations were required to conduct sim-
ple activities such as the installation of new software on
UAT and production environments or the retrieval of a
database backup file. Usually this resulted in task delays;

2) Whenever task delays occurred throughout the pro-
ject lifecycle, the rate of visits increased so as to ensure
that TMS deployment work was carried out as planned.

Gamma Bank having sustained a highly sophisticated
and secure TMS IT environment on its premises, assisted
in keeping the project complexity at a medium level
compared to the rest of the projects even though high IT
security levels resulted at some cases to project time-
frame delays. As observed, in the case of Beta Bank,
when nearing TMS upgrade dates the recorded issues to
be resolved experienced an increased rate. As a conse-
quence the Printec Group TMS Support team had to be
highly responsive, during these periods, regarding re-
quests communicated by the banking institution’s man-
agement. In fact, this team behaviour had to be consistent
within all client project environments.

IT Project Environment Factors Affecting Requirements Analysis in
Service Provisioning for the Greek Banking Sector

Copyright © 2010 SciRes. JSEA

865

3.1.3. Delta Bank
The third project for the deployment of TMS at Delta
Bank premises, subsidiary to the largest worldwide fi-
nancial institution based in the USA, started in Novem-
ber 2008 and lasted till August 2009 with a halting pe-
riod of six months due to events caused by the recent
global economic recession. With an approximate dura-
tion of three months, three weeks and eleven reported
issues, see Figure 3, it was the fourth in scale project of
all with medium complexity. Medium project complexity
resulting to project timeframe delays existed due to cer-
tain reasons as described below:

1) Established IT security corporate policies meant
that several authorisations were required to conduct sim-
ple activities such as the installation of new software on
UAT and production environments or the retrieval of a
database backup file. Usually this resulted in task delays;

2) Whenever task delays occurred throughout the pro-
ject lifecycle, the rate of visits increased so as to ensure
that TMS deployment work was carried out as planned;

3) The TMS deployment project timeframe of delivery
was largely affected by the recent economic turmoil.
Even though the active project duration was recorded as
three months and three weeks; adding the inactive period
to the project duration equals to nine and a half months.

The Delta Bank TMS environment IT setup shared a
lot of similarities to that of Gamma Bank since both were
seeking upgrades of older TMS7 systems to the most
recent TMS7 software releases. Therefore, the major
factors which affected requirements analysis and project
completion are stated along the same lines.

3.1.4. Sigma Bank
The fourth project for the deployment of TMS on behalf
of Sigma Bank at Printec Greece premises, a small
banking institution based in Greece, started at the end of
April 2009 and lasted till mid-May 2009. With an ap-
proximate duration of three weeks and only six reported
issues, see Figure 3, in terms of scope, time and budget,
as stated in PMBOK®, this was a successful project. Low
project complexity resulted to the effective application of
project management and service management practices
and an improved project timeframe for reasons described
below:

1) High control of outsourced TMS deployment ser-
vice owned by Printec Greece e-Payments Department
POS Helpdesk team;

2) A quick issue resolution process in collaboration
with Printec Greece e-Payments Department;

3) IT security policies were set internally by Printec
Group TMS support and Printec Greece e-Payments De-
partment POS Helpdesk teams.

Sigma Bank on its own involved a fresh installation of
TMS at the premises of Printec Greece; the Greek sub-
sidiary of Printec Group. Requirements definition and
management was conducted in an organised and concise
manner, from the beginning of the project. The materi-
alisation of a TMS6 system failure meant that reactive
tasks had to be put in place for urgent issue resolution
purposes. All tasks falling within the data migration and
installation barriers were executed in a timely and highly
responsive manner. Furthermore, good communications
among project stakeholders throughout the duration of
the project was executed. This involved communication
of the TMS support team with counterparts in the Printec
Greece e-Payments Department. The Technical Supervi-
sor of the Printec Greece e-Payments Department POS
Helpdesk team was appointed the TMS administrator.
Regarding risk management techniques risk owners were
appointed for the data migration, installation, mainte-
nance and administration tasks. As a result emerging
issues were resolved within reasonable timeframes. A
request was made for risk control and monitoring pur-
poses so that tasks were put in place to avoid future risk
materialisation e.g. establish daily TMS system database
backup plan.

3.1.5. Omega Bank
The fifth project for the deployment of TMS at Omega
Bank premises, the Greek subsidiary of a French finan-
cial services Group, started in May 2009 and lasted till
November 2009. With an approximate duration of six
months and eleven reported issues, see Figure 3, it was
the second largest and most complex project of all. High
project complexity resulting to project timeframe delays
existed due to several reasons as described below:

1) Low availability of IT resources;
2) Insufficient IT infrastructure capabilities;
3) Inexistent corporate IT security policy;
4) Lack of appointment of TMS administrator(s);
5) As a result additional TMS performance issues were

recorded due to compliance failure of the client to mini-
mum system specifications;

6) An increased rate of visits so as to ensure that TMS
deployment work was carried out as planned meant that
the project timeframe suffered additional delays;

7) Numerous training sessions had to be organised due
to an apparent indifference of Omega Bank POS Help-
desk staff to acquire the knowledge necessary to proceed
to service delivery;

8) The project was part of the first live deployment of
new corporate TMS software product during which, the
TMS support team underwent a knowledge transfer and
knowledge acquisition period as part of the service tran-

IT Project Environment Factors Affecting Requirements Analysis in
Service Provisioning for the Greek Banking Sector

Copyright © 2010 SciRes. JSEA

866

sition process.
During the project initiation stage Omega Bank

seemed to have many similarities to the Beta Bank TMS
project environment. However, a known risk materialised
over the course of the project which regarded low IT
resources support capability from the client side. This
meant that most of IT resources management had to be
conducted by the Printec Group TMS Support team
which increased the responsibility and accountability
factors on the side of the service supplier. Although the
initial project plan presented to Omega Bank did not in-
clude this kind of additional tasks the overall project du-
ration was largely affected. Moreover, the inexistence of
an appointed TMS administrator added to the already
high complexity level of the project. However, due to the
fact that the newly released TMS8 software was to up-
grade the old TMS6 system project completion was of
high priority and significance and therefore the efforts
focused in enabling a smooth transition for the day-to-
day Omega Bank POS management activities.

3.2. Identified Environment Factors Affecting
Requirements Analysis

In Subsections 3.1.1 through 3.1.5, a series of IT projects
has been presented each with its own distinct characteris-
tics. The five project environments highlighted in terms
of project management, service management and busi-
ness analysis distinguish themselves though certain iden-
tified influential factors. These factors relate to three
domains. Firstly, factors relating to human behaviour and
competencies which entails individual task ownership,
responsibility, accountability, competence and skills.
Secondly, factors related to policy and standards com-
pliance and lastly factors influenced by IT systems ar-
chitecture and IT resources availability.

The total project duration recorded at the end of each
project lifecycle indicated a correlation between the or-
ganisation criticality, see Table 3, and total project issues
per project, see Figure 4, to form a similar pattern as
shown in Figure 5.

Throughout the lifecycle of a project and from infor-
mation recorded during project closure in the lessons
learned documentation, certain environment factors were
identified which carry a major influence on service de-
livery time and budget management as well as require-
ments analysis and implementation acceptance by the
client. These factors are as follows:

1) IT security policies and standards applied, e.g.
ISO/IEC 27000;

2) Corporate software deployment policy procedures
on the client side;

3) Software documentation provision e.g. user manual,

Figure 4. Total project issues per project depicted on a ra-
dar chart.

Figure 5. Total project duration (months) per project de-
picted on a radar chart.

operator manual, etc.;

4) Rate of software training sessions for system ad-
ministrators and system users;

5) Rate of formal walkthroughs, meetings and visits at
the client site;

6) Appropriate IT support team skills on the service
provider side;

7) System administrator(s) attitude(s) in terms of new
requirements requests made, commitment to software
administration, comprehension skills of new software
through training sessions and user acceptance testing
sign-off willingness;

8) IT resources availability i.e. hardware, servers, etc.;
9) Senior management commitment from both, the ser-

vice supplier and the client;
10) Selection of appropriate deployment period. For

example, festive periods which result in high transaction
rates, summer time when seasonal shops operate e.g.
touristic shops, restaurants, hotels, should be carefully
considered when making request for change for TMS;

IT Project Environment Factors Affecting Requirements Analysis in
Service Provisioning for the Greek Banking Sector

Copyright © 2010 SciRes. JSEA

867

11) Definition of project stakeholders’ task ownership
at the beginning of the project, for both the service sup-
plier and the client, using techniques such as a RACI
(Responsible-Accountable-Consulted-Informed) chart.

The aforementioned factors should not be assigned to
a weighting system whereby each factor is categorised
according to impact on project deliverables. The reason
behind this being that throughout the duration of the five
case studies presented wherever one or more of these
factors was not satisfied there were bound to be user ac-
ceptance issues and system deployment delays. The
question at hand is how a service supplier can satisfy as
many of the factors stated previously, in order to fulfil
client requirements and attain high client satisfaction.

Sigma Bank forms a distinct exception to the above
identified factors due to the fact that it signifies an out-
sourcing IT project i.e. the TMS software was installed
internally at Printec Greece premises. In this case, the
control over the IT competency of POS management
system was given exclusively to Printec Greece–POS
Helpdesk team. Therefore, certain environment factors
were considered unnecessary. For example, as mentioned
earlier the Sigma Bank TMS7 installation was a result of
an unexpected system failure and urgency emerged for
the issue to be resolved as soon as possible. Therefore the
factor regarding suitable yearly period deployment can-
not be applied in this case since the system recovery and
deployment processes commenced as soon as the system
failure occurred.

4. Findings

A number of noteworthy findings are evident regarding
the service provision of a Terminal Management System,
developed from Printec Group–R&D Division, to five
banking establishments operating within Greece. More-
over, a full cycle of requirements analysis has been de-
scribed whereby requirements identification, categorisa-
tion and prioritisation processes combined with best
practice in Project Management according to PMBOK®,
IT Service Management according to ITIL® and Business
Analysis according to BABOK® can be instrumental to-
wards successful requirements analysis.

The identification of eleven factors that have poten-
tially influenced the five project environments of Beta
Bank, Gamma Bank, Delta Bank, Sigma Bank and
Omega Bank indicates the necessity to cater for each one
in order to fulfil successfully client requirements in the
Greek banking sector. In other words, to increase project
implementation success rates these factors should be con-
sidered thoroughly. If success is to be measured in terms
of Scope, Time and Budget as stated in PMBOK®, then
that means that projects should be governed by generally

accepted best practice frameworks. For the five case
studies presented in Section 3, the project completion
rate and projects within scope rate was 100%. In general,
these were caused by the project environment factors
identified in Subsection 3.2. There was no case of force-
ful project closure even though on one occasion there
was a halting period which lasted up to six months as a
consequence of the effects of the current economic re-
cession on Delta Bank. It is also notable, that the Sigma
Bank project signified an outsourced IT competency to
Printec Greece. The TMS deployment project was a suc-
cess in project management, service management and
requirements analysis terms but this does not necessarily
mean that outsourcing is an option for any client of any
size. Sigma Bank holds a relatively small corporate
structure, the lowest number of POS devices in its TMS
database and therefore the lowest number of require-
ments.

It has been shown that constantly employed require-
ments analysis tools, techniques and methodologies as
well as issue management, time management, resources
management, risk management, stakeholder management
and service supplier Service Desk Operations reporting,
assist greatly in the process of capturing client require-
ments in a timely fashion. The need of senior manage-
ment buy-in in the process of requirements identification
has been also stressed. This increases client confidence
and maintains a healthy client-supplier relationship. Re-
quirements categorisation has revealed that when priori-
tising requirements, influencing factors should be mainly
customer centric.

Finally a thorough account of PMBOK®, ITIL®v3 and
BABOK® methodologies has been given whereby scope
management, time management, resources management,
issue management, Service Desk, availability manage-
ment, stakeholder management, risk management, busi-
ness analysis and release management processes have
been blended with requirements analysis tasks in order to
maximise business benefits. As PMBOK®, ITIL®v3 and
BABOK® methodologies are used to a certain extent,
though limited within Greece, this research has indicated
the significant opportunities presented for improved re-
quirements analysis when the PMBOK®, ITIL®v3 and
BABOK® frameworks are used in conjunction in IT pro-
ject environments for the Greek banking sector.

5. Conclusions

This paper has presented the various environment factors
with either negative or positive impact on the require-
ments analysis phase while undertaking five IT projects
with differing environmental setups within the Greek
banking sector. The essence of keeping healthy cli-

IT Project Environment Factors Affecting Requirements Analysis in
Service Provisioning for the Greek Banking Sector

Copyright © 2010 SciRes. JSEA

868

ent-supplier relationships, appropriate IT and human re-
source provisioning by the customer side, appropriate
visit frequency rates at the customer site, provision of
high-quality software documentation from the service
supplier side, training provision of system administrators
and users from the service supplier, compliancy to cor-
porate IT security and software deployment standards at
the client site, setting service transition milestones in
accordance to specific yearly periods, service supplier
and client senior management commitment to project
deliverables as well as the use of PMBOK®, ITIL® and
BABOK® methodologies has been highlighted. Vital
issue management tools and techniques have also been
presented such as the importance of keeping an up-to-
date set of recorded issues as part of Service Desk opera-
tions and issue resolution statistics reporting to the Di-
rector of Printec Group–Software R & D Division. More-
over, the effects of proper guidance in the requirements
analysis process which entails the requirements identifi-
cation, categorisation, prioritisation, implementation and
release stages has been clearly indicated. The specific
PMBOK®, ITIL® and BABOK® functions applied within
Printec Group–Software R & D Division TMS support
team have also been presented. Finally, the importance of
defining services provision in an ‘IT-enabled business’
context has been discussed whereby the development and
deployment of IT software products support corporate
strategic envisioning, business vitality and viability
through the achievement of specific business goals.

6. Acknowledgements

Special thanks to Printec Group of Companies and the
Software R & D Division which contributed to a signifi-
cant degree to the research presented. Special thanks to

Dr. Fotis Moulatsiotis without whom the research would
not have been realised. His impeccable judgment and
proper guidance filled me with more determination to
complete a thorough research. Many thanks to Alexander
Poutos, Christos Michas and George Dimitropoulos for
their contribution on IT service support matters and
thanks to the POS Applications Development and POS
Helpdesk teams of Printec Greece e-Payments Depart-
ment. Many thanks also to the unknown referees. All
contributions filled me with greater motivation and en-
thusiasm to conduct the research.

REFERENCES

[1] Office of Government Commerce, ITIL® v3–IT Service
Management Core Books, TSO, 2007.

[2] Project Management Institute, “A Guide to the Project
Management Body of Knowledge,” 4th Edition, Project
Management Institute, 2008.

[3] B. Hughes, R. Ireland, B. West, N. Smith and D. I. Shep-
herd, “Project Management for IT Related Projects,” Brit-
ish Computer Society in Association with Biddles Ltd.,
London, 2004.

[4] IIBA, “A Guide to the Business Analysis Body of Knowl-
edge (BABOK Guide),” International Institute of Busi-
ness Analysis, 2009.

[5] P. Wheatcroft, “World Class IT Service Delivery,” British
Computer Society in Association with CAPDM, London,
2007.

[6] J. Robertson and S. Robertson, “Mastering the Require-
ments Process,” 2nd Edition, Addison Wesley, Reading,
2006.

[7] E. Harrin, “Project Management in the Real World,”
British Computer Society in association with CAPDM
2007.

J. Software Engineering & Applications, 2010, 3, 869-874
doi:10.4236/jsea.2010.39101 Published Online September 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

869

Requirements Analysis: Evaluating KAOS Models

Faisal Almisned, Jeroen Keppens

King’s College, London, UK.
Email: faisal.almisned@kcl.ac.uk, jeroen.keppens@kcl.ac.uk

ABSTRACT

Wigmore’s charts and Bayesian networks are used to represent graphically the construction of arguments and to evalu-
ate them. KAOS is a goal oriented requirements analysis method that enables the analysts to capture requirements
through the realization of the business goals. However, KAOS does not have inbuilt mechanism for evaluating these
goals and the inferring process. This paper proposes a method for evaluating KAOS models through the extension of
Wigmore’s model with features of Bayesian networks.

Keywords: KAOS, Requirements Evaluation, Wigmore’s Chart, Bayesian Networks

1. Introduction

The alignment of requirements analysis to business goals
and objectives is essential for the return of investment of
any project. KAOS is a goal driven requirements analysis
method that defines a goal tree with parent and sub goals.
KAOS assumes that achieving all sub goals of a parent
goal will guide to the achievement of the parent goal.
The inferring process in KAOS is informal, due to the
nature of deduction in KAOS, which is based on the as-
sumption that the completion of sub goals leads deci-
sively to the parent goal. However, there is no guarantee
that the previous assumption is always valid. The lack of
precise assessment for KAOS goals requires further con-
sideration. Usually, in realty some sub goals does not
lead to the parent goal due to some contextual knowledge
that was not measured completely in KAOS representa-
tion. Another cause of the uncertainty of goals originates
from the possibility of assigning multiple values to one
goal rather than only two possible values (true or false),
which is the only option taking into account in the cur-
rent features of KAOS. For instance, if one of the sub
goals was completed partially, there is no feature to
measure the impact of this sub goal to the parent goal.

This paper takes into account the possibility of failures
in achieving the ultimate goals in KAOS models. This
paper will propose a new graphical representation model,
which can absorb KAOS models to be represented
through it. The new model enables analysts to provide
measurable ultimate goals accompanied with probability
to give analysts statistical results. These results will fa-
cilitate the evaluation process of the whole KAOS model.
The new Model will formalize the inferring process to be

mathematically valid.

2. KAOS

KAOS is a goal oriented requirements analysis method,
developed by University of Oregon and university of
Louvain. KAOS stands for Knowledge Acquisition in
automated Specification [1]. The main advantage of
KAOS over other requirements analysis methods, which
are not part of the goal analysis family, is its ability to
align requirements to business goals and objectives. This
alignment increases the chances that the new develop-
ment will add value to business.

KAOS focus on realizing and indicating the business
goals, then specifying the requirements that infer to the
business goals. “Each goal (except the leaves, the bottom
goals) is refined as a collection of sub goals describing
how the refined goal can be reached” [2]. The structure
of the various connected requirements and goals is rep-
resented hierarchically in graphical notation in an up-
wards direction. The top goals are strategic objectives for
the business. As low as the diagram level reaches as
closer to the low level requirements. The root of the dia-
gram is the ultimate business goals. Then, the analysts
must identify the penultimate goals followed by the
lower goals and so on. The previous step is recurring
until the analysts reach the basic goals. The lower goals
are linked with the parent goals through union. The union
indicates that the completion of the lower goal success-
fully will definitely cause the completion of their parent
goal. Figure 1 shows an example of a simplified KAOS
model. KAOS main focus is on the business require-
ments, disregarding if this requirement is part of the

Requirements Analysis: Evaluating KAOS Models

Copyright © 2010 SciRes. JSEA

870

Figure 1. An example of KAOS.

computer system requirements or not. Each goal is ac-
companied with obstacles and the stakeholders involving
in this goal. A limitation of KAOS is the lack of any in-
ference evaluation capabilities. The achievement of sub
goals does not imply the achievement of their parent
goals in all cases. The next section presents a review of
two candidate approaches to solve this issue.

3. Related Work

In this section, two graphical representation models will
be studied as possible methods to evaluate KOAS models.
The features of these approaches will be examined to
check the suitability of them to enclose KAOS models.

3.1. Bayesian Networks

Bayesian Network (BNs) is a general statistical tool that
can be applied to various applications. BNs are helpful to
assess the weight or the influences of premises, to deter-
mine the strong inference links. [3] Bayesian Network is
a graphical representation tool using symbols, numbers
and arrows to enable analysts to reason logically far from
doubt. It is an appropriate tool to gather and analyze evi-
dences, in order to produce strong arguments. There are
two components to construct BNs. First, nodes are rep-
resenting the noticed evidential facts, propositions and
variables. Second, arrow that connects between various
nodes in the diagram. These arrows indicate the depend-
ency probabilities. The value or the weight of each node
is affected by the value of the nodes influencing this
node and linked with it. The final conclusion of the net-
work is affected by the probabilities of each proposition
and inference. (See Figure 2)

Bayesian Network is a method to reason logically and

rationally using probabilities. The simplest way to under-
stand the goals of BNs is to think of a circumstance you
need to “model a situation in which causality plays a role
but where our understanding of what is actually going on
is incomplete, so we need to describe things probabilisti-
cally” [4]. There, BNs allow analysts to compute the
overall probability of the final conclusion. By, computing
the probability of propositions connected directly, then
the higher connections, then the higher and so on. The
benefits from BNs are obvious in the prediction of out-
comes in doubtful cases. Also, the benefits are apparent
in the detection of the causes of certain results. The in-
fluencing relations are not decisive but probabilistic; the
precise probability is assigned for each node and relation.
BNs are a Directed Acyclic Graph. BNs are constructed
from nodes and directed links. Arrows that connect vari-
ous propositions are accompanied with the probabilistic
information required to define the probability distribution
all over the network. To achieve that, initial probability
value should be assigned to the nodes with no earlier
nodes. Then, calculate the provisional probability for the

Figure 2. Simple bayesian network.

Requirements Analysis: Evaluating KAOS Models

Copyright © 2010 SciRes. JSEA

871

rest of the nodes and for all possible combinations of
nodes and their antecedents. BNs permit the computation
of the provisional probabilities of every node, bearing in
mind that the value of some of the nodes has been speci-
fied before that computation took place. The diagrams’
direction of Bayesian Network is downwards. In brief,
the strength of the final argument is affected by the
probability calculations of the supporting evidences and
facts. The connections in the network represent the direct
inference probabilities. The structure of the network il-
lustrates the probabilistic dependency between various
variables in a case. Each node is accompanied with a
conditional probabilistic table of that node. The mixture
of values for the nodes' ancestors will be provided.
[5].The main incompatibility between Bayesian Net-
works and KAOS modeling is the fact that the direction
of BNs is downwards which contradicts with the deduc-
tion process of KAOS. However, the probabilities feature
is an important aspect to be added to the evaluation
process.

3.2. Wigmore’s Chart

Wigmore’s chart (WC) was created by John Henry Wig-
more (1913) to help lawyers. [6] Wigmore’s chart acts as
a legal reasoning diagramming method. Wigmore’s chart
considered as an argument diagramming techniques to
demonstrate the structure of reasoning and inferring for
an argument in a legal case. The diagram as a whole
identifies the logic, structure and grounds behind the
reasoning of arguments in legal cases. WC is a tool
which enables the creation of arguments followed by the
examination of those arguments, then the recreation of
those arguments. WC is valuable in cases surrounded
with doubt and uncertainty. In order to create WC, ana-
lysts of legal cases must identify the connections in all
steps of the arguments. Then, the analysts should break-
down the argument into propositions and facts. After that,
the analysts should connect these facts and propositions
together towards inferring the final conclusion of that
argument. The chart method of Wigmore has a number
of symbols to represent the different types of proposi-
tions and evidences. These symbols are connected with
arrows to specify the direction, influence and weight of
the inference. The final conclusions of the chart illustrate
the logical deduction of the propositions and facts that
assemble the inference. One of the main characteristics
of WC is the production of key lists. The key list con-
tains a list of all propositions, facts, evidences and as-
sumptions, which are used to build the final conclusion
of the arguments presented. In addition, inference maps
show the gathering and linking process of evidences, this
validates the argument construction procedure. The chart
direction is upwards from facts to assumptions. The chart

contains symbols, numbers and arrows only, but, will be
accompanied with a key list clarifying the statement of
each proposition or evidence (see Figure 1). There are
five main symbols required for the construction of the
Chart Method of Wigmore according to Schum [7] (See
Figure 3).

Wigmore’s chat properties can be used to evaluate the
deduction process of KAOS models. But, the lack of
measurable results affects the reliability of the evaluation
process of KAOS models.

3.3. Comparison

Bayesian networks and Wigmore’s chart have valuable
features, which can aid the needed evaluation of KAOS
models. However, their weakness does not provide a
sufficient method for evaluation. The following table
compare the two models.

Bayesian Networks Wigmore Chart

Based on statistics, using prob-
abilities calculation for prem-
ises and relations

Based on the natural logic of
rea-soning. In addition to the
skills and knowledge of the chart
creators

The network direction is down-
wards

The chart direction is upwards

Not extendable notations, BN is
a Directed Acyclic Graph

Extendable notations, richer se-
mantics and it has some under-
standing of what it represents

Applicable to wide range of
domains, used in various ap-
plications

Designed for law domain, but
can be applied to other domains
only if it can be extended

Produce supportive probabilis-
tic arguments for the final con-
clusion

Enable the production of argu-
ment in favour and disfavour of
the desired outcome

More Complex generation Less complex generation

Top down approach
Enable Top down and Bottom
up approaches

Measurable results, not decisive
Either for or against the intended
outcome

The perspective of the creators
does not play any role in the
outcome of the network

The Chart Method of Wigmore
allows the occurrence of multi-
ple evaluations and considera-
tions of same evidences in legal
cases, from various perspec-
tives.

The information flow from the
basic fact or variable to the final
outcome or goal

The information flow from the
final outcome or goal to the basic
fact or variable

As shown in the earlier comparison, the need to combine

selected features from these two approaches could prove
to be beneficial in terms of producing valuable method to
evaluate KAOS models, as explained in the next section.

Requirements Analysis: Evaluating KAOS Models

Copyright © 2010 SciRes. JSEA

872

Figure 3. An example of wigmore chart.

4. Extending Wigmore’s Chart

Bayesian networks and Wigmore’s chart have number of
practical and valuable features. The integration of some
of these features will offer a model with superior capa-
bilities and usage. The offered model will encapsulate
several characteristics from both earlier models that do
not contrast with each other. The extended model has to
capture the properties, which are compatible with each
other. This will allow the production of useful model,
which facilitates the graphical representation of various
tasks.

The suggested model extracts most of its properties
from the chart method of Wigmore with the inclusion of
one property of Bayesian networks and other external
aspects. The model has to include additional aspects in
order to address the gaps, which are not fulfilled com-
pletely by BNs and WC. The new model has several fea-
tures. First, it enables both Top down and Bottom up
Approaches, in order to facilitate the generation of mod-
els starting from the basic premises or starting from the
desired conclusion. Second, the new model allows the
production of measurable results to provide more accu-
rate and reliable representation, through the introduction
of probabilistic calculations. The third feature states that
the new model should be extendable to be applicable to
various domains. This is related to the notations of the
models and the observation of contextual knowledge.
Fourth, the new model eases the creation of representa-
tion supporting the desired goal, and against the desired
goals. Finally, the new model will eliminate the com-
plexity and ambiguity raised from representing the mul-
tilayered nature of cases or similar repetitive patterns.
This multilayered nature could cause high complexity as
stated by Hepler “If all these features are represented in
one diagram, the result can be messy and hard to inter-
pret” [8]. Another cause of complexity is the reappear-

ance of a similar pattern of evidences and relations be-
tween facts and propositions, within the same case or in
similar cases. And it would be “wasteful to model these
all individually” [8]. It allows any network to contain an
instance of another network without showing the detailed
structure until requested. Moreover, it authorizes the
creation of general networks that contains repeated pat-
terns of evidences and relations, which can be reused
after few amendments to customize the structure to the
current case. This feature can be represented in the dia-
gram as a special symbol. This model aims to simplify
the creation of probabilistic graphical models and to
convert the presentation into more efficient and under-
standable form.

There are six main symbols required for the construc-
tion of the new model. The five foremost symbols are
derived from Wigmore’s chart in a generalized manner to
make them applicable to various domains. The last sym-
bol is to represent the new feature of representing a re-
peated pattern or inclusive diagram. First, white circles
are representing the directly related propositions or goals.
Second, the black circle is a symbol of the directly re-
lated facts. Third, white squares stand for the subsidiary
propositions. Fourth, the Black squares, which corre-
sponds to the subsidiary facts. Fifth, arrows are showing
the flow of relations between propositions and facts. Ar-
rows are used to clarify the inference logic or flow in the
arguments. Finally, the black rectangle illustrates the
presence of repetitive pattern or another inclusive dia-
gram. The number inside the rectangle will refer to the
final conclusion of the repeated pattern or inclusive dia-
gram. The diagram direction is upwards. Every symbol
will be accompanied with the probability calculation
function, which will calculate the provisional probability
of each node based on the probabilities of the precedent
directly connected nodes. The black circles and squares
will be assigned with initial probability values.

There are a series of sequential steps to construct the
new model representation. First, the analysts should start
by identifying the ultimate goal from the analysis. Sec-
ond, the analysis team should realize and assign the final
conclusion of the model usage, the penultimate proposi-
tions which support the final conclusion and the middle
propositions that support the higher propositions. The
previous step could be repeated recursively. Third, the
analysis team have to define the provisional facts and
evidences that support all of the propositions in the chart.
This can happen by indicating the scenario behind the
construction for or against the goal of the analysis team
in this case. Fourth, the analysts have to list all key
premises and inference links to simplify the construction
process. Fifth, analysts should commit to the appropriate
construction of the model, by using the accurate symbols

Requirements Analysis: Evaluating KAOS Models

Copyright © 2010 SciRes. JSEA

873

and right features. Numbers will be assigned to each
symbol indicating the correct proposition or fact from the
key list. Finally, after the existence of real arguments, the
evaluation process should start. The analysis team should
assess the arguments and evidences behind them. The
analysts have to assign the initial probability values then
calculate the provisional probabilities for the whole dia-
gram. Afterwards, the joint probability for the whole
diagram must be calculated, according to the probability
computations rules. By this, the evaluation process could
be emphasized. This will help to generate measurable
outcomes to solve various issues. Figure 4 presents the
usage of the new models symbols. The next section will
provide a glimpse about the significant of using our new
model.

5. Evaluation KAOS

This section will show how the new extended model
could be used to evaluate KAOS. The extended model
will enclose KAOS goals and provide a measurable
evaluation of the possibility of achieving the final out-
come. Figure 5 shows a basic KAOS model with three
goals.

The constructed KAOS model could be evaluated by
transferring the current goals and requirements in this
KAOS model to the new models’ graphical representa-
tion. This step is quite simple. The new model is simi-
larly upwards. Each goal will be in the same position in
the diagram as it was. The direct goals and requirements
are represented as white and black circles. All nodes in
KAOS tree will be represented as circles, the basic re-
quirements with no earlier nodes are black and the goals
are white. The accessory goals and requirements corre-
spond to white and black squares. In the new model,
analysts will be allowed to represent partially related
goals and their requirements as squares, the basic related
requirements are black and the related goals are white.
Unions inside the KAOS model can be represented as
arrows in the model. The constraints within KAOS
model can be represented as a rectangle, which can
symbolize the contextual knowledge or any compound
model that involves repeated pattern or another model
structure.

Figure 6 shows how to enclose the previous KAOS
model into the new model. Then, the initial probability
values have to be assigned to the nodes in the diagram.
After that, analysts have to calculate and assign the pro-
visional probability to all goals. These provisional prob-
abilities will be produced by computation functions as-
signed with the inference process, which will calculate
the provisional probability of each node based on the
probabilities of the precedent directly connected nodes.
This function should be following the acknowledged

probability rules.

6. Conclusions

This paper proposed an extension of Wigmore’s chart
model, intended for evaluating the inference process
among goals in KAOS models. Additionally, it provided
a mechanism to measure the possibility of achieving a
parent goal if its sub goals are achieved.

Figure 4. An example of the new model with sample prob-
abilities.

Figure 5. A basic KAOS model.

Figure 6. An example of the new model with the accompa-
nied provisional probabilities.

Requirements Analysis: Evaluating KAOS Models

Copyright © 2010 SciRes. JSEA

874

Both Wigmore’s chart and Bayesian networks were
reviewed before an extended Wigmore’s chart could be
proposed. The new model provides a mathematical eva-
luation of KAOS, increasing the chances of constructing
the right model. The new model presents a method for
producing measurable results of the overall goals.

The main obstacle of the proposed evaluation ap-
proach is that it is not always feasible to know and assign
the possibility of the inference from the leaves to the
parent node. The proposed model suggested the use of a
new separate model rather than extending KAOS model.
This is to avoid adding complexity to KAOS models, in
addition to the standardization grounds.

This work can be extended by building on the mathe-
matical properties of the extended Wigmore’s chart and
by identifying advanced means for assigning the initial
probability values.

REFERENCES

[1] A. Dardenne, A. van Lamsweerde and S. Fickas, “Goal-
Directed Requirements Acquisition,” Science of Com-

puter Programming, Vol. 20, No. 1-2, April 1993, pp.
3-50.

[2] Respect IT, A KAOS Tutorial, Objectiver, 2007.

[3] F. Taroni, C. Aitken, P. Garbolino and A. Biedermann,
“Bayesian Networks and Probabilistic Inference in Fo-
rensic Science,” John Wiley and Sons, Chichester, 2006.

[4] E. Charniak, “Bayesian Networks without Tears,” AI
Magazine, Vol. 12, No. 4, 1991, pp. 50-63.

[5] R. Neapolitan, “Learning Bayesian Networks,” Prentice
Hall, New Jersey, 2004.

[6] C. Reed, D. Walton and F. Macagno, “Argument Dia-
gramming in Logic, Law and Artificial Intelligence,” The
Knowledge Engineering Review, Vol. 22, No. 1, 2007, pp.
87-109.

[7] D. A. Schum, “A Wigmorean Interpretation of the
Evaluation of a Complicated Pattern of Evidence,” Tech-
nical Report, 2005. http://tinyurl.com/2a3elq

[8] A. Hepler, P. Dawid and V. Leucari, “Object Oriented
Graphical Representations of Complex Patterns of Evi-
dence,” Law, Probability and Risk, Vol. 6, No. 1-4, 2007,
pp. 275-293.

J. Software Engineering & Applications, 2010, 3, 875-881
doi:10.4236/jsea.2010.39102 Published Online September 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

875

Model-Driven Derivation of Domain Functional
Requirements from Use Cases

Jianmei Guo1, Zheying Zhang2, Yinglin Wang1

1Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; 2Department of Computer
Sciences, University of Tampere, Kanslerinrinne, Finland.
Email: {guojianmei, ylwang}@sjtu.edu.cn, Zheying.Zhang@cs.uta.fi

ABSTRACT

Domain analysis is essential to core assets development in software product line engineering. Most existing approaches,
however, depend on domain experts’ experience to analyze the commonality and variability of systems in a domain,
which remains a manual and intensive process. This paper addresses the issue by proposing a model-driven approach
to automating the domain requirements derivation process. The paper focuses on the match between the use cases of
existing individual products and the domain functional requirements of a product line. By introducing a set of linguistic
description dimensions to differentiate the sub-variations in a use case, the use case template is extended to model
variability. To this end, a transformation process is formulated to sustain and deduce the information in use cases, and
to match it to domain functional requirements. This paper also presents a prototype which implements the derivation as
a model transformation described in a graphical model transformation language MOLA. This approach complements
existing domain analysis techniques with less manual operation cost and more efficiency by automating the domain
functional requirements development.

Keywords: Software Product Lines, Domain Analysis, Model Transformation, Use Cases, Functional Requirements

1. Introduction

Software product line engineering (SPLE) has emerged
as one of the most promising software development
paradigms for production of a set of closely related
products. It reduces development costs, shortens time to
market, improves product quality, and helps to achieve
greater market agility [1,2]. Some organizations make a
transition from conventional single-system engineering
to SPLE in order to enable mass customization and
maintain their market presence. They systematically re-
use legacy systems and existing products which embody
their domain expertise to develop the core assets base of
product lines [3,4].

Domain analysis is a process by which information
used in developing software systems is identified, cap-
tured, and organized with the purpose of making it reus-
able when creating new systems [5]. Its essential active-
ties include analysis of commonalities and variabilities
from the similar existing products and elicitation of do-
main requirements. Many domain analysis techniques
[6-10] have been used to identify and document the
commonalities and variabilities of systems constituting
the product line. These techniques, however, mostly de-

pend on domain experts’ experience [2,11,12], and lack
automated support [2,4,11]. When existing products have
a significant amount of commonalities and also consis-
tent differences among them, it is possible to extract the
product line from them. If domain requirements, together
with other systems artifacts, can be automatically rea-
soned and extracted from requirements of existing prod-
ucts, the amount of effort will be reduced significantly.

In this paper, we focus on functional requirements, and
propose a model-driven approach to deriving domain
functional requirements (DFRs) from use cases of exist-
ing products. Use cases are a widely used technique for
requirements specification, but there is no generally ac-
cepted formalism to explicitly represent the variations of
scenarios in a use case [13]. Using the metamodeling [14]
and the model transformation techniques [15,16], the use
case template [17] is adapted for variability modeling in
order to derive DFRs for product lines. By introducing a
set of linguistic description dimensions into use cases to
differentiate the sub-variations, the use case template is
extended to model the variability. Further, we analyze
the correlation between the tailored use cases and the
DFRs, and present a model-driven framework to derive
DFRs from use cases. We also presents a prototype which

Model-Driven Derivation of Domain Functional Requirements from Use Cases

Copyright © 2010 SciRes. JSEA

876

implements the derivation as a model transformation
described in a graphical model transformation language
MOLA [18]. Our approach reduces the manual operation
cost and complements existing domain analysis tech-
niques by introducing an automated process of common-
ality and variability analysis.

The remainder of this paper is organized as follows.
Section 2 defines the metamodels of use cases and DFRs
and analyzes their correlation. Section 3 proposes a mo-
del-driven framework for DFRs derivation and presents a
model transformation definition in MOLA. Section 4
discusses related work. Section 5 concludes this paper
with future work.

2. The Underlying Metamodels

2.1. Use Cases

Use cases have been a means to understand, specify, and
analyze user requirements that is rather often used [19].
They are widely adopted to capture functional require-
ments from an outside or users point of view. A use case
describes the actions of an actor when following a certain
task while interacting with the system to be described. It
also describes a system’s behavior as it responds to a
request that originates from outside of the system. Use
cases are often recorded by following a template. Al-
though there are no standard use case templates, most of
them describe more or less the same issues, e.g., the sys-
tem to be described, the use cases within the system, the
actors outside the system, and the relationships between
actors and use cases or in between use cases [20].

One of the most commonly used use case templates is
suggested by Cockburn [21]. According to Cockburn’s
template, a use case is described with its name, goal in
context, scope, level, trigger, pre- and postconditions,
main success scenario, extensions, sub-variations, and
other characteristics [17]. The main success scenario
describes what the use case actually does. It is the main

part in a use case description, and often described as a
sequence of steps or several alternatives to steps, such as
extensions and sub-variations. Extensions specify changes
in the course of execution of the main success scenario,
and sub-variations give the further details of a step’s
manner or mode that will cause eventually bifurcation in
the scenario. The main success scenario, together with
extensions and sub-variations, describes a use case be-
havior, and also implies a set of fine-grained functional
requirements. As is shown in Figure 1, the step is a basic
object to capture a use case behavior. It has attributes
such as step #, name, description, use case name, actor,
and trigger. The attributes step # and name can be used
to identify a step. A step could have sub-variations, and
can be extended to another (set of) step(s) based on a
given condition. Instances of step form the main success
scenario.

To derive DFRs from use cases, common and variable
requirements have to be identified and analyzes. The
above use case description includes the specifications of
sub-variations and extensions, but still lacks the formal-
ism to model variability and to support domain analysis.
In order to add the formalism to support variability mod-
eling for the product line, we extend the existing use case
metamodel by adding the attribute ProductSite and a set
of dimensions for the steps described in the main success
scenario, as shown in Figure 1. The attribute “Product-
Site” records the owner of the step, which clarifies the
existing product to which the step belongs, and help to
analyze the commonality and variability in the course of
defining the product line scope. The dimensions structure
the specification of the sub-variations for the steps. They,
are deduced according to the linguistic characteristics of
functional requirements [4] and present the different
perspectives of sub-variations. The dimensions include
agentive, attributive, locational, temporal, process, and
purpose.

Figure 1. The extended use case metamodel.

Model-Driven Derivation of Domain Functional Requirements from Use Cases

Copyright © 2010 SciRes. JSEA

877

Agentive defines the agent(s) whose activities will

bring about the state of affairs implied by the step, e.g.,
“{author}Agentive submits an article”. Attributive defines
the attributes of the agentive or of the object associated
with the action implied by the step, e.g., “submit a {re-
search, review}Attributive article”. Locational defines the
spatial location(s) where the activity implied by the step
is supposed to take place, e.g., “submit an article {at of-
fice, at home}Locational”. Temporal defines the duration or
frequency of the activity implied by the step, e.g., “sub-
mit an article {every week, every month}Temporal”. Proc-
ess defines the instrument, the means and the manner by
which the activity is performed, e.g., “submit an article
by {email, submission system}Process”. Purpose defines
the purpose that the agentive carries out the activity or
that the objective is affected by the activity implied by
the step, e.g., “submit an article for {propagating the
knowledge}Purpose”.

The extended use case metamodel mainly involves the
steps, the sub-variations and the extensions because these
elements from Cockburn’s template have the direct rela-
tionship with functional requirements. It also models the
variability through introducing a set of linguistic descrip-
tion dimensions to differentiate the sub-variations. The
product site of each step is added for further analyzing
the commonality and variability of DFRs.

2.2. Domain Functional Requirements

DFRs specify the common and variable requirements for
all foreseeable applications of the product line. Accord-
ing to the Orthogonal Variability Model (OVM) [2], we
define the variability model of DFRs in Figure 2.

Besides the essential attributes of a DFR, i.e. name and
description, a DFR shall document its variability. Vari-
ability comprises the variability subject and the variabil-
ity object. A variability subject is a variable item or a
variable property of such an item [2]. If a DFR or its

property has the tendency to change, it is a variability
subject. The property with tendency to change can be
further defined as a variation point. A DFR could have
one or more variation points. In general, a variation point
of a DFR expresses a variable semantic concern of the
DFR. To present different semantic concerns of a DFR,
we also define a set of types for the variation points of
DFRs according to the linguistic characteristics of func-
tional requirements [4], i.e. agentive, attributive, loca-
tional, temporal, process, and purpose.

A variability object is a particular instance of a vari-
ability subject [2]. It is represented as a variant. A variant
represents a single option of the semantic concern that
the variation point expresses, and a variation point may
have one or more variants.

A DFR could come from one or more product sites in
a product line. Such product sites can be used to calculate
the CV ratio (Commonality/Variability ratio). A CV ratio
records the frequency a DFR appears in a domain. Engi-
neers can use the CV ratios to decide whether a DFR is
common or optional. Generally, a DFR is common if it
has a CV ratio “100%”.

A DFR constraint documents a relationship between
two DFRs, between a variant and a DFR, or between two
variants. There are two types of relationship, i.e. requires
and excludes. Each DFR constraint has a domain and a
range. A domain of a constraint is the constraint’s sub-
ject that possesses the constraint relation; a range of a
constraint is the constraint’s object that is affected by the
constraint relation. For example, a constraint “A requires
B” expresses the constraint relation “requires” between
its domain “A” and its range “B”. A domain or a range
also has its “name” and its “type”.

2.3. Correlation between Use Cases and Domain
Functional Requirements

Steps presented in our prior metamodel describe the

Figure 2. The domain functional requirement metamodel.

Model-Driven Derivation of Domain Functional Requirements from Use Cases

Copyright © 2010 SciRes. JSEA

878

fine-gained functional requirements of a use case. The
same requirements can be specified as a DFR for a prod-
uct line. Since different products could have the same,
the similar, or the different functional requirements, the
DFRs can be obtained by merging the same and the
similar functional requirements and distinguishing the
variable ones. We conclude the correlation between use
cases and DFRs as follows, which grounds the model
transformation for DFR derivation.

2.3.1. Identifying Requirements
Steps with different ProductSite value is mapped into a
DFR if their identity has the same value, i.e., the same
attribute name. Then, the sub-variations of a step are
mapped into the variants of the DFR according to their
same names. The dimensions of the sub-variations are
also mapped into the variation points of the DFR
according to their same types.

2.3.2. Analyzing Commonality and Variability
The commonality and variability can be analyzed by
calculating the CV ratio. The productSite of the same
step, together with the total number of products of the
product line, forms the input of the calculation.

2.3.3. Identifying the Constraints
The relationships between and within the use cases shall
be mapped correctly into the constraints of DFRs in
terms of the same domain and the same range. Some
constraints are straightforward and can be identified
easily. For example, the extensions and the triggers of the
steps can be mapped into the “requires” constraints of
DFRs, i.e. “a trigger of a step” can be represented as “the
step requires the trigger”. The “precondition” of a use
case can be mapped into the “requires” constrains of the
DRF derived from the step numbered Step 1 in the use
case. However, some more complex relationships in use
cases are not identified in this paper. For example,
according to Cockburn’s template, a step also represents
another use case (subordinate use case). Thus, a complete
use case could have different “levels”. These levels form
the hierarchical relationship between the steps. In
addition, the conditional relationship and the sequential
relationship of the steps are also simplified. These
complex relationships will be explored in our future

work.

3. The Derivation Process

3.1. Framework

Based on the proposed metamodels and their correlation,
it is feasible to derive the DFRs from the use cases of a
set of closely related products in the same domain. We
propose a model-driven framework for DFRs derivation
from use cases in Figure 3.

The figure shows the scenario of model transformation
from multiple source models (use cases) into a target
model (DFR model). Both the source model and the tar-
get model are instantiated from their respective meta-
models, i.e., the use case metamodel and the DFR meta-
model. A model transformation definition is defined
based on these metamodel specifications. The transfor-
mation definition is executed on concrete models by a
transformation engine.

3.2. Model Transformation Process

We present a prototype that implements the derivation of
DFRs as a model transformation described in a graphical
model transformation language MOLA [18]. MOLA
provides an easy readable graphical transformation lan-
guage by combining traditional structured programming
in a graphical form with pattern-based rules. It clearly
distinguishes what is from source models, what is from
target models, and what is the mapping association be-
tween them. It is suitable for representing loops, which
makes the time complexity analysis clearer.

A program in MOLA is a sequence of statements. A
statement is a graphical area delimited by a rounded rec-
tangle. The statement sequence is shown by dashed ar-
rows. Thus, a MOLA program actually is a sort of a
“structured flowchart”. The simplest kind of statement is
a rule that performs an elementary transformation of in-
stances. A rule contains a pattern that is a set of elements
representing class and association instances (links) and is
built in accordance with the source metamodel. A rule
has also the action that specifies new class instances to
be built, instances to be deleted, association instances to
be built or deleted, and the modified attribute values. The

Figure 3. Model-driven framework for DFRs derivation.

Model-Driven Derivation of Domain Functional Requirements from Use Cases

Copyright © 2010 SciRes. JSEA

879

semantics of a rule is standard, i.e., locating a pattern
instance in the source model and apply the actions.

The new elements, instances, and links, are shown
with dotted lines. The mapping associations prefix the
association name by the “#” character. The mapping as-
sociations link instances corresponding to different
metamodels; they typically set the context for next sub-
ordinate transformations and trace instances between
source models and target models in the model transfor-
mation.

The most important statement type in MOLA is the

loop. Graphically a loop is a rectangular frame, contain-
ing a sequence of statements. This sequence starts with a
special loop head statement. The loop head is also a pat-
ter but with the loop variable highlighted (by a bold
frame). The reference notation prefixes an instance name
by the “@” character to show that the same instance se-
lected by the loop head is used. The semantics of a loop
is natural, i.e., performing the loop for any loop variable
instance which satisfies the conditions specified by the
pattern.

As is shown in Figure 4, the model transformation

Figure 4. Model transformation definition in MOLA.

Model-Driven Derivation of Domain Functional Requirements from Use Cases

Copyright © 2010 SciRes. JSEA

880

from use cases to DFRs contains three nested loops. The
outer loop is executed for each step instance. The next
statement is a rule building a DFR from a set of steps
according to their same names. The mapping association
“#dfrFORst” records which DFR from which step actu-
ally has been generated and can be reused in the follow-
ing statements. Thus, all input steps with the same name
will be merged as one DFR. Meanwhile, the rule also
identifies these steps’ product sites to build the DFR’s
product sites. Next, the extensions and the trigger of the
step are transformed into the “requires” DFR constraints.

The middle-level loop is executed for each dimension
of the steps. Its rule builds the variation points from the
dimensions according to their same types. Its pattern ref-
erences the “#dfrFORst” mapping association built by
the previous statement. The loop head “dim:Dimension”
is combined with building actions. Thus, all the dimen-
sions, having the same type and belonging to a set of
steps with the same names, will be merged as one varia-
tion point of the DFR that is generated by the set of steps.

The inner loop is executed for each sub-variation of
some dimension of some step. Its rule builds a variant
through merging a set of sub-variations with the same
name.

Note that the CV ratios of DFRs will be calculated
according to the product sites of DFRs after the model
transformation process. For those steps without sub-
variations, only the outer loop will be executed for ana-
lyzing their commonality and variability.

4. Related Work and Discussion

Some researchers have studied how to extend use cases
with variability. They exploit and extend the use cases
for product lines in different perspectives and by differ-
ent means. For example, Jacobson et al. [8] introduce
variation points into use case diagrams and use them to
describe different ways of performing actions within a
use case. Gomaa [22] and John and Muthig [13] intro-
duce stereotypes, such as <<variant>>, <<kernel>> and
<<optional>> for use cases for modeling families of sys-
tems. Most research remains the documentation of vari-
abilities, but ignores the principle of SPLE, i.e. proactive
reuse. Topics such as how to systematically reuse exist-
ing requirements to derive domain requirements lack
enough research. In this paper, we extend use cases with
a multi-dimensional structure for modeling the variability,
and record the product site of each step in use cases.
These extensions support systematic reuse of domain
knowledge by deriving domain requirements from exist-
ing use cases, and analyzing the commonality and vari-
ability.

Many domain analysis methods, such as FODA (Fea-

ture-Oriented Domain Analysis) [6], FORM (Fea-
ture-Oriented Reuse Method) [7], SCV (Scope, Com-
monality, and Variability) [10], RSEB [8] and Fea-
tuRSEB [9], identify and document the commonalities
and variabilities of related systems in a domain. Never-
theless, these typical domain analysis techniques mostly
depend on domain experts’ knowledge and experience to
manually acquire commonalities and variabilities. In ad-
dition, Braganca and Machado [23] and Wang et al. [24]
propose automated approaches to transformation between
feature models and use cases. Our approach comple-
ments the existing domain analysis techniques by pro-
viding automated support for developing DFRs from use
cases.

Manual effort is yet indispensable in our approach.
First, analysts must scope domain requirements and for-
mulate domain terminology. Second, each use case must
be specified with the predefined use case metamodel and
unified domain terminology, which helps uncover the
incompleteness and inconsistency of existing require-
ments to a certain degree. Although NLP techniques
could be incorporated into DFRs development to mini-
mize the manual operation cost [4], their accuracy can
not yet be guaranteed sufficiently. Third, a comprehend-
sive analysis of variability dependencies must be done by
analysts in terms of domain context. In summary, domain
experts still play an essential role in the DFRs develop-
ment.

5. Conclusions

In this paper, we propose an automated approach to
DFRs derivation using the metamodeling and model
transformation techniques. The main contribution is to
present a model-driven approach to domain requirements
analysis. The approach complements the existing domain
analysis techniques by reducing the manual operation
cost and improving the efficiency in DFRs development,
which further enhances the transition process from sin-
gle-system engineering to SPLE. In addition, the model
transformation definition documents the traceability in-
formation between DFRs and use cases, which helps
manage domain requirements and trace their rationale for
decision making in SPLE.

Our future work is twofold. First, we will further im-
prove our current approach, especially exploring how to
handle the complex constraint dependency. Second, we
will verify our approach through an in-depth experiment-
tal study.

6. Acknowledgements

This work is supported by the National Natural Science
Foundation of China (NSFC No. 60773088), the National

Model-Driven Derivation of Domain Functional Requirements from Use Cases

Copyright © 2010 SciRes. JSEA

881

High-tech R & D Program of China (863 Program No.
2009AA04Z106), and the Key Program of Basic Res-
earch of Shanghai Municipal S & T Commission (No.
08JC1411700).

REFERENCES

[1] P. Clements and L. Northrop, “Software Product Lines:
Practices and Patterns,” Addison Wesley, Boston, 2001.

[2] K. Pohl, G. Bockle and F. van der Linden, “Software
Product Line Engineering: Foundations, Principles and
Techniques,” Springer Verlag, Heidelberg, 2005.

[3] C. W. Krueger, “Easing the Transition to Software Mass
Customization,” Proceedings International Workshop on
Product Family Engineering, Bilbao, 2001, pp. 282-293.

[4] N. Niu and S. Easterbrook, “Extracting and Modeling
Product Line Functional Requirements,” Proceedings
RE’08, Barcelona, 2008, pp. 155-164.

[5] R. Prieto-Diaz, “Domain Analysis for Reusability,” Pro-
ceedings 11th Annual International Computer Software
and Applications Conference, Tokyo, 1987, pp. 23-29.

[6] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A.
S. Peterson, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study,” Technical Report CMU/SEI-90-TR-
021, Software Engineering Institute, Canadian Mennonite
University, 1990.

[7] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin and M. Huh,
“FORM: A Feature-Oriented Reuse Method with Do-
main-Specific Reference Architectures,” Annals of Soft-
ware Engineering, Vol. 5, No. 1, 1998, pp. 143-168.

[8] I. Jacobson, M. Griss and P. Jonsson, “Software Reuse:
Architecture Process and Organization for Business Suc-
cess,” Association for Computing Machinery Press, 1997.

[9] M. L. Griss, J. Favaro and M. D. Alessandro, “Integrating
Feature Modeling with the RSEB,” Proceedings of Inter-
national Conference on Steel Rolling’98, Victoria, 1998,
pp. 76-85.

[10] J. Coplien, D. Hoffman and D. Weiss, “Commonality and
Variability in Software Engineering,” IEEE Software, Vol.
15, No. 6, 1998, pp. 37-45.

[11] M. Moon, H. S. Chae and K. Yeom, “An Approach to
Developing Domain Requirements as a Core Asset Based
on Commonality and Variability Analysis in a Product
Line,” IEEE Transactions on Software Engineering, Vol.
31, No. 7, 2005, pp. 551-569.

[12] E. de Almeida, J. Mascena, A. Cavalcanti, A. Alvaro, V.
Garcia, S. de Lemos Meira and D. Lucrédio, “The Do-
main Analysis Concept Revisited: A Practical Approach,”
Proceedings of International Conference on Steel Roll-
ing’06, Turin, 2006, pp. 43-57.

[13] I. John and D. Muthig, “Tailoring Use Cases for Product
Line Modeling,” Proceedings of Requirements Engineer-
ing for Product Lines’02, Essen, 2002, pp. 26-32.

[14] Z. Zhang, “Model Component Reuse-Conceptual Foun-
dations and Application in the Metamodel-Based Systems
Analysis and Design Environment,” Ph.D. dissertation,
Jyvaskyla Studies in Computing 39, University of Jy-
vaskyla, 2004.

[15] A. G. Kleppe, J. B. Warmer and W. Bast, “MDA Ex-
plained: The Model Driven Architecture: Practice and
Promise,” Addison Wesley, Longman Publishing Co., Inc.,
Boston, 2003.

[16] S. Sendall and W. Kozaczynski, “Model Transformation:
The Heart and Soul of Model-Driven Software Develop-
ment,” IEEE Software, Vol. 20, No. 5, 2003, pp. 42-45.

[17] A. Cockburn, “Basic Use Case Template,” 2010. http://
alistair.cockburn.us/Basic+use+case+template.

[18] A. Kalnins and J. B. E. Celms, “Model Transformation
Language MOLA,” Proceedings of Working Conference
on Model Driven Architecture: Foundations and Applica-
tions (MDAFA’04), Linköping, 2004, pp. 62-76.

[19] I. Jacobson, “Object-Oriented Software Engineering: A
Use Case Driven Approach,” Addison Wesley, Woking-
ham, England, 1992.

[20] Object Management Group, “Unified Modeling Language
(UML), version 2.2,” 2010. http://www.omg.org/techno-
logy/documents/formal/uml.htm.

[21] A. Cockburn, “Writing Effective Use Cases,” Addison
Wesley, Boston, 2001.

[22] H. Gomaa, “Object Oriented Analysis and Modeling for
Families of Systems with UML,” Proceedings of Inter-
national Conference on Steel Rolling’00, Vienna, 2000,
pp. 89-99.

[23] A. Braganca and R. J. Machado, “Automating Mappings
between Use Case Diagrams and Feature Models for
Software Product Lines,” Proceedings of Southern Pover-
ty Law Center’07, Kyoto, 2007, pp. 3-12.

[24] B. Wang, W. Zhang, H. Zhao, Z. Jin and H. Mei, “A Use
Case Based Approach to Feature Models’ Construction,”
Proceedings RE’09, Atlanta, Georgia, 2009, pp. 121-130.

J. Software Engineering & Applications, 2010, 3, 882-889
doi:10.4236/jsea.2010.39103 Published Online September 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Towards Lightweight Requirements
Documentation

Zheying Zhang1, Mike Arvela2, Eleni Berki1, Matias Muhonen3, Jyrki Nummenmaa1, Timo Poranen1

1Department of Computer Sciences, University of Tampere, Tampere, Finland; 2Futurice GmbH, Taubenstraße, Berlin, Germany;
3Nomovok Ltd., Keilasatama, Espoo, Finland
Email: {zheying.zhang, eleni.berki, jyrki.nummenmaa, timo.poranen}@cs.uta.fi, mike@arvela.net, matias.muhonen@nomovok.com

ABSTRACT

Most requirements management processes and associated tools are designed for document-driven software develop-
ment and are unlikely to be adopted for the needs of an agile software development team. We discuss how and what can
make the traditional requirements documentation a lightweight process, and suitable for user requirements elicitation
and analysis. We propose a reference model for requirements analysis and documentation and suggest what kind of
requirements management tools are needed to support an agile software process. The approach and the reference
model are demonstrated in Vixtory, a tool for requirements lightweight documentation in agile web application devel-
opment.

Keywords: Lightweight, Requirements Documentation, Requirements Management Tool, Agile Software Development

1. Introduction

Many agile methods emphasize working code [1,2] and
working documentation (e.g. in the case of SCRUM), too.
Agile methods concentrate on adding value to business
and agile software development is an intensive commu-
nication process with users. The requirements analysis
and documentation activities, however, are often carried
out intuitively. Instead of a full requirements document,
the most common form of user requirements includes a
user story or a use case, which tells a story on how the
user completes a meaningful task in interaction with the
system to be built. Working on the increments based on
user stories involves interaction with the end-user, where
more information comes in the form of feedback from
the user. This feedback contains changes, additions and
refinements on requirements.

Well-defined requirements have traditionally been
seen as a critical factor behind software project success
[3-6]. Agile methods also emphasize the user require-
ments, but they are less documentation-centric. It is,
however, important to consider how and to whom the
requirements are presented and used. We want to develop
a user-centric reference model to capture the require-
ments analysis and documentation environment; this can
improve user participation and requirements representa-
tion, while supporting agile ways-of-working and values.
The paper presents a lightweight requirements documen-

tation environment by proceeding as follows. Initially we
present the rationale of having a requirements documen-
tation phase and comment on the three dimensions of
requirements engineering (RE). The latter grounds the
discussion of how and what might make the requirements
documentation a lightweight process and, thus, more
agile. Based on this discussion, we propose a reference
model for requirements analysis and documentation, and
further discuss what the requirements management tools
should be like for agile projects. We finally propose
Vixtory [7], a prototype tool for agile web application
development, as an example to demonstrate the light-
weight requirements documentation environment sup-
ported by our reference model.

2. The Three Dimensions of Requirements
Engineering

Pohl [8] describes the RE activities and their goals along
three orthogonal dimensions: specification, representa-
tion, and agreement. The framework assumes that there
are three major facets of the RE process, namely docu-
menting the requirements in a more complete manner,
with more formality, and more consensus among stake-
holders [8,9]. The specification dimension deals with the
degree of requirements understanding at a given time [8].
Completeness and understandability of knowledge form
the main concerns in this dimension. The representation

Towards Lightweight Requirements Documentation

Copyright © 2010 SciRes. JSEA

883

dimension copes with the degree of formality of knowl-
edge expression [8]. In general, requirements can be
documented in three types of representation: informal
representation (e.g. natural language), semi-formal rep-
resentation (e.g. ER diagram, state diagram, etc.), and
formal representation (e.g. mathematics expression).
From the informal presentation to the formal one, re-
quirements documents are shifting from the user-oriented
ones to the system-oriented ones. The agreement dimen-
sion deals with the degree of agreement reached on a
specification. It focuses on a variety of views of the same
system from heterogeneous groups of stakeholders, and
emphasizes the common agreement.

3. The Meaning of ‘Lightweight’
Requirements Documentation

Requirements documentation provides a means of com-
municating between diverse stakeholders and achieving
common agreement on the future software artifacts de-
scription [3]. Requirements elicitation is perceived as an
essence for a software development project, but the re-
quirements analysis, documentation, validation and
maintenance are very tedious processes. Many research-
ers claim that most requirements specifications found in
industry nowadays still include many poor-quality re-
quirements [6,7], even though there are so many different
techniques to ensure the requirements’ quality. Poor re-
quirements form an important reason that causes the fail-
ure of many IT projects [5,10].

An ideal requirements document shall be correct, com-
plete, consistent, precise, testable, and traceable [4]. In
practice, however, it is hard to address all requirements
up front, and to maintain a correct and consistent docu-
ment throughout the project in an ever-changing envi-
ronment. In agile software projects, in particular, the tra-
ditional requirements process is replaced with iterations
and increments, and the documentation is replaced with
user stories, working software, and changing requests.
We shall ensure that stakeholders express, understand,
document, use, and maintain requirements in a correct
and easy way. The requirements gathering and agreement
process should shift from documentation to communica-
tion efforts. A more narrative and context-specific ap-
proach should be adapted to improve the requirements
analysis process, and at the same time, keep it light-
weight. The latter indicates the environment which de-
ploys the available resources to effectively support the
communication and the consequent analysis and docu-
mentation. The meaning of lightweight is next discussed
along three important dimensions.

From the perspective of specification, requirements
documentation is an ongoing process, and the details can

be elaborated just in time. Requirements need not be
fully specified up front, at a very early stage of the pro-
ject, when many aspects are unknown and needs cannot
yet be expressed, consistently and correctly, to say the
least. We hereby agree with other researchers [3,12,13]
supporting that requirements development is an ongoing
process throughout a software development project.
Meanwhile, there is no point in specifying highly de-
tailed requirements before software or at least prototype
development even starts. Software requirements can be
elaborated at the right time when they are selected for
implementation. This is natural as the application do-
mains of the real world, to which the software targets, is
subject to change. Furthermore, users change their un-
derstanding towards their requirements and needs as the
development proceeds in new software releases that need
feedback.

From the perspective of representation, prototypes or
working software improve the requirements understand-
ability by providing a context realism representation. To
get some grip of the concept lightweight in the represen-
tation dimension, we make the following division of
ways of working to document requirements. In the tradi-
tional waterfall model, the requirements have been
documented before the actual software is being built. A
typical way to express requirements is textual [7,14].
Different from the traditional waterfall model, prototyp-
ing [3,14] means building software to mimic the behavior
and functionality of the target software to be built. The
prototypes are used to validate requirements, but, they
could also be seen as specification techniques, where
requirements can be elicited upon and attached to what
can be called prototyping software. Similarly, it is also
possible to attach requirements to working software. This
has become more of an option in incremental software
development, where software is built on top of existing
increments, as is typically done in agile software devel-
opment. The working software can provide users a real
and actual representation of the requirements. It can be
regarded as a starting point to elicit and refine require-
ments rather than an end of a development cycle. Such a
context enriched representation makes a smooth trans-
formation from the high level requirements description to
the detailed implementation, and enhances the clarity and
understandability of requirements. At the same time, the
requirements are not rigid with a specific form of repre-
sentation, which forms a flexible and lightweight process
to represent requirements.

From the perspective of agreement, timely feedback on
small releases of working software supports the evolution
from the individual views to a common agreement. In-
cremental development that utilizes prototypes or other
prototype-like software artifacts, e.g. working software,

Towards Lightweight Requirements Documentation

Copyright © 2010 SciRes. JSEA

884

gives us a possibility to attach a part of the requirements
to existing increments. This allows stakeholders not only
to perceive the target applications, but also to present
their individual views and wishes based on the existing
version. With the frequent releases, stakeholders can re-
view the working software, adjust their understanding of
the target application, and provide timely feedback as the
requirements for the follow-up iterations. It flexibly
supports the evolution from the personal views to a
common agreement on the target system, and avoids the
aforementioned problems of prototyping methods: The
software does not give a promise of a functionality which
may be incorrect and also the design is “as-is”.

4. A Reference Model for Requirements
Documentation Environments

The most essential aspects in a requirements analysis and
documentation environment can be captured in a refer-
ence model. The reference model has ER like notations.
The rectangles represent entities which facilitate re-
quirements documentation. They are integrated together
through a number of traceability links, represented as
arrows. As shown in Figure 1, the model consists of
three basic entities: requirements, external documents,
and software artifacts. These are the most essential arti-
facts found in every software project, and documented in
the supporting tools. Entities are interlinked with each
other through a number of traceability links. Each entity
and links can be specialized and instantiated to create
organization or project specific requirements documenta-
tion environments. Since lightweight documentation is
our main concern and target in this study, the instances
and attributes, which reflect the nature of agile software
development approaches, are marked in bold. In the fol-
lowing section, we will discuss the reference model
along different dimensions of lightweight requirements
documentation.

4.1. Requirements

Requirements comprise the specifications of the services
that the system should provide, the constraints on the
system and the background information that is necessary
to develop the system [16]. They are typically repre-
sented in a natural language, supplemented by diagrams
such as the use case diagram, the data flow diagram, etc.
Requirements are documented with attributes such as
creation date, version number, author, description, prior-
ity level, status, etc.

Instead of limiting a requirements specification to a
single and rigid representation, the informal representa-
tions of users’ conception of their system such as user
stories [1,2], use cases, and scenarios can be elaborated

Figure 1. A reference model of a requirements analysis and
documentation environment.

and attached to the working software at a right time,
which can make the requirements documentation process
intuitive and encourage customers’ participation. User
stories include a set of small sentences that express the
user needs, in her/his own words [2]. The description
tells a story on how the user completes a meaningful task
in interaction with the system to be built. When a user
story is selected for implementation, it can be further
elaborated by the developers in their preferable forms.

Requirements can be documented in different levels of
detail. The high abstraction level requirements, such as
user stories, are documented by interacting with custom-
ers and by means of experimental use of prototypes or
working software. They are customer’s actual needs.
When the user stories are selected for implementation,
they are refined and adjusted into detailed tasks, and im-
plemented and evaluated within the same iteration. Such
divide-and-conquer tactics isolate the customers from
complex technical implementation, while enable them to
provide timely evaluation and feedback of accumulated
implementations.

4.2. External Documents

External documents represent the documents which are
not stored in any requirements management tools (RMTs).
In traditional software development process, they typi-
cally describe and contain the requirements specified in
general-purpose document tools, modeling tools, etc.
These documents are structured ones and easy to create,
but static. It is hard for different stakeholders to work in
collaboration on the same document, and to document
and exchange ideas in a lightweight process.

An agile principle is close collaboration between de-
velopers and customers. A lightweight documentation
needs a platform that can support effective and efficient
collaboration among an often large number of diverse
needs and requirements stakeholders. The model we
propose enhances collaboration by adding the instance of
generic collaborative platforms, such as wikis [17,18]

Towards Lightweight Requirements Documentation

Copyright © 2010 SciRes. JSEA

885

and issue trackers. These can provide a flexible way of
open review, elaboration, refutation, or refinement with a
discussion thread. Further the discussion and communi-
cation comments give rise to the development of narra-
tive descriptions of the features and requirements of the
software under development. This can reduce the details
needed in the requirements documentation, as the de-
tailed contextual information can be linked to the discus-
sion on the collaborative platform. The process can be
adapted to support active stakeholders participation in
requirements elicitation and documentation [18].

4.3. Software Artifacts

Software artifacts represent the final or interim byprod-
ucts during the development of software. Examples in-
clude specifications, prototypes, code, testing cases, as
well as working software released at the end of each it-
erative process. They are connected with requirements
through a variety of traceability links, which provide
contextual information within the development team to
support software development activities, such as change
impact analysis, testing, maintenance, project tracking,
etc.

As one of the agile principles is ‘frequent releases’, the
development team can deliver working software to the
customers for their experimental use and for feedback [1].
The experimental use process expands the contextual
information within the development team to that between
the customers and the developers. It facilitates customers
to explore the real working product, and to provide indi-
vidual feedback before the final delivery, which reduces
the uncertainty between the development team and the
customers. Being different from a prototype, which may
represent some compromise from the final production
design, the working software provides customers with an
actual production design, and, thus, eliminates the risks
of misunderstanding and misleading. The context spe-
cific information of working software is much more real
than that of a prototype. Furthermore, compared with the
throw-away prototype approach [3,14], the practice of
short release of working software saves time and other
resources in a software project. Therefore, an easy use of
the traceability link among requirements and the working
software is necessary to facilitate the communication of
ideas and prompt feedback.

4.4. Traceability Links

Traceability links connect the instances of every compo-
nent to provide contextual information on the target sys-
tem [13]. They present the relationship of entities instan-
tiated from the same element, such as the elaboration
relationship between a high level user story and a list of
low level tasks, the validation relationship between a test

case and a segment of the software, or the hyperlinks
available in wikis or any other collaborative platforms.
Furthermore, the traceability links between different
elements allow developers to trace code back to the con-
versation from which the artifact came, back to the user
story, and finally to its initial requirements [19]. They
also facilitate the customers to be involved in the devel-
opment process by tracing between the user stories to the
working software. Consequently, there are two categories
of traceability links in the requirements documentation
environment: links within tools and links between tools.
It is undoubted that a set of tools are deployed within a
project to support the development activities from dif-
ferent aspects. In general, each tool can provide some
sort of traceability information within the use of tool,
such as the aforementioned elaboration or validation
links. Besides, it is necessary for an agile project to have
an integrated environment by using hyperlinks to connect
the requirements and other information scattered in dif-
ferent tools. Examples include the traceability link be-
tween the prototyping software and the RMTs, between
the collaborative platform and the RMTs or a CASE tool.
These hyperlinks ease the flexible documentation and use
of requirements and the related information [20], which
reflects the goal of the reference model.

Access to documented traceability provides different
levels of context realism. It is indeed very valuable.
However, the manual burden directly contradicts with the
agile principles. Developers are often reluctant to par-
ticipate in the effort of documenting traceability informa-
tion [13,21,22]. On the basis of the existing tools, a solu-
tion to connect the scattered information manually or
automatically into the iteration is very important. The
next section elaborates further on this aspect.

5. Tools Supporting Lightweight
Requirements Documentation

There is a number of tools supporting requirements
analysis and documentation. A tool survey conducted by
INCOSE [23] compares the features of over forty differ-
ent RMTs from 2004 to 2009. These tools support the
requirements documentation process and, clearly, influ-
ence the quality of the documentation. Before discussing
the need for lightweight requirements documentation
tools, we will have an overview of the features of tools
that support the traditional requirements documentation
phase.

5.1. Classification of Requirements
Documentation and Management Tools

We attempt to broadly classify existing RM tools into
four groups: general-purpose document tools, collabora-

Towards Lightweight Requirements Documentation

Copyright © 2010 SciRes. JSEA

886

tive tools, RMTs, and prototyping tools.
The general-purpose document tools mainly include

office suites such as MS Office, Open Office, Lotus
SmartSuite, etc. These are not too specialized, and many
users are acquainted with since they are easy to adapt to
the needs of different development environments. Sur-
veys report that these general-purpose document tools,
though not sophisticated, in practice are helpful with re-
quirements documentation [5,6,24-26]. Though the
non-specialized features can be considered as a great
merit, it is difficult to support specific RE activities and
ensure the quality of the derived documents. .

The collaborative tools offer a flexible platform that
can involve a number of diverse users in common tasks
to achieve their goals and for collaborative editing of
contents. Wikipedia is an example for creating an ency-
clopedia openly and collaboratively by volunteers from
all around. According to the level of collaboration, there
are different categories of these tools ranging from a
simple information sharing application (e.g. online chat,
wikis, etc.) to sophisticated systems that facilitate group
activities (e.g. knowledge management and project man-
agement systems). Instead of facilitating documentation,
these tools provide a lightweight solution to creating,
editing, sharing, and discussing information; the latter
obviously improve the communication and collaboration
for requirements analysis.

RMTs are dedicated to manage the large amount of
data collected during the RE process and the volatility of
the requirements [3]. There are many commercial RMTs
such as DOORS, Requisite pro, CaliberRM, etc. Typi-
cally, these tools collect the requirements in a database
and provide a range of facilities to access the information
on the requirements. These facilities include require-
ments browsing, requirements converting, report gener-
ating, requirements tracing, change control, etc. The
RMTs that support formal requirements representation
can also facilitate requirements consistency checking and
semantics verification [27]. Such tools aim at technical
users, and provide a comprehensive environment to sup-
port the different dimensions of RE process. Empirical
studies [25] support that RMTs provide better coverage
of the RE process and the quality of requirements docu-
mentation. On the other hand, many surveys [5,6, 24-26]
report that the mainstream practice relies on office and
modeling tools rather than RMTs. Survey reports contra-
dict on the industrial use and the rationale of RMTs.

The prototyping tools are specific tools, which rapidly
represent, build, and realize important aspects of a soft-
ware-based system. The prototype serves as an experi-
mental system to demonstrate requirements and collect
stakeholders feedback. Prototyping tools range from
simple ones that develop a mock-up system to special-

ized ones that create interactive wireframes for websites
and desktop software, and design user interfaces with
high functionality. Examples include Axure RP, Proto-
Share, etc., which generate web-based prototypes. Be-
sides, some general-purpose CASE tools provide good
support for prototyping for user interfaces and web de-
sign, such as the graphic design tools (e.g. Illustrator or
Adobe Photoshop), the diagramming tools (e.g. Visio or
SmartDraw), and the visual and text based HTML tools
(e.g. FrontPage, Dreamweaver, etc.). Instead of specify-
ing and managing requirements, the prototyping tools
focus more on providing stakeholders with a real ex-
perimental system, which increases requirements under-
standability and avoids requirements creep and rework.
In addition to these four categories of tools for require-
ments documentation, there are also agile project man-
agement tools, such as Rally, Scrumworks Pro, which
facilitate backlog (requirements) editing and report gen-
erating. All these tools provide support for requirements
documentation in some aspects of the reference model
depicted in Figure 1. In general, RMTs, as well as all
other requirements documentation tools, provide support
for requirements specification in different levels of for-
mality. Besides, the collaborative tools provide more
flexible support for the external documents, while the
prototyping tools can provide links between the software
artifacts and the requirements. Obviously, none of them
can cover the components specified in the reference
model of Figure 1.

The purpose of requirements documentation is com-
munication among a number of stakeholders. The gen-
eral-purpose document tools have widespread availability.
They, however, lack adequate support for communica-
tion and collaboration in the RE process. The collabora-
tive tools compensate for the deficiency of collaboration
in the general-purpose documentation tools, but lack
enough support in context enriched representation and
just-on-time requirements documentation. The RMTs
tools over-emphasize the specification and representation
dimension of the RE process, i.e. the bureaucratic and
rigid support for the RE process, but do not facilitate a
close and smooth interaction between developers and
customers [21,26]. The communication factor is lost. The
prototyping tools, on the other hand, offer users the ac-
tual prototype for experimental use and feedback, but,
most of them, lack necessary features that facilitate
just-on-time specification. In a summary, Figure 2 illus-
trates the tools previously discussed and their support of
the goals set within the three dimensions of lightweight
requirements documentation, as discussed in the begin-
ning of this work.

Consequently, in order to better support requirements
documentation, a tool should capture the three important
dimensions of the RE process, as outlined in the context

Towards Lightweight Requirements Documentation

Copyright © 2010 SciRes. JSEA

887

Figure 2. Tools within the three dimensions of lightweight
requirements documentation.

of this paper. A single tool cannot provide all the desired
features for a lightweight requirements documentation
process. The latter should be facilitated by a set of simple,
intuitive, and widespread availability tools [20,28],
which could easily and flexibly be integrated into the
development environment.

5.2. Vixtory–A Target Application Based
Requirements Documentation Tool

As shown in Figure 2, prototyping tools are the ones

most close to the desired lightweight requirements docu-
mentation. The target is, thus, to improve the specifica-
tion dimension of such tools and provide users with an
actual experimental use of the target application. Moti-
vated from these needs and the tools features discussion,
we developed a requirements management tool for agile
web application development, namely Vixtory [7]. It
provides a lightweight and less burdensome documenta-
tion approach by annotating requirements directly to the
target application. The stakeholders are allowed to par-
ticipate in the development process and review the target
application even during development.

Vixtory [7] was implemented with Groovy and the
Grails framework [29] using Asynchronous Javascript
and XML (AJAX) to store requirements in a relational
database. Vixtory models requirements in an intuitive
way: the requirements are part of the application being
developed. There is no need to maintain a separate re-
quirements document. The stakeholders can add a new
version of the web application being developed to Vix-
tory’s project database. Each version is identified by an
URL address. Stakeholders can freely navigate in the
Vixtory web application with a standard web browser.

As can be seen from Figure 3, the web page under
development is on the right side of the screenshot, and
the requirements pane showing a list of the requirements

Figure 3. The layout of Vixtory.

Towards Lightweight Requirements Documentation

Copyright © 2010 SciRes. JSEA

888

is on the left. The stakeholders can browse the web ap-
plication in question freely page-in-page and identify the
requirements for individual views of the web application.
The identified requirements are attached with the re-
quirements annotation tool to the corresponding view of
the web application. An annotation in Vixtory is a priori-
tized requirement containing a textual description, listed
on the requirements pane.

The annotated requirement is visually linked to an ele-
ment on the web application. Any elements from links to
complicated forms can be annotated with a requirement.
The annotations provide a clear traceability link between
requirements and the implementation without adding a
burden of a specification document, which also facilitates
the communication and collaboration between stake-
holders. Vixtory provides developers and on-site cus-
tomers with a straightforward view of the web applica-
tion being developed, which forms the actual target ap-
plication context. It also supports and manages change by
allowing effortless updating and replacing of require-
ments.

Vixtory was created with user experience and ease of
use as top priorities [30]. Given that Vixtory is in its first
commercial release iteration, much work still remains to
be done. The requirements specification and representa-
tion will further be improved in order to provide
end-users with more flexibility in the documentation
process. The hypertext links, for instance, between Vix-
tory and the existing project management tools or col-
laborative platforms are missing and this is something
that will further be considered. How easily Vixtory can
be integrated and used with other development platforms
and organizational cultures are open questions, worth
considering for our ongoing research.

6. Conclusions

We discussed the need for lightweight requirements
documentation and presented a reference model for ad-
dressing this need. We provided an existing RM facili-
tated tools taxonomy and drew conclusions on how these
tools support requirements analysis and documentation in
agile software development. Upon the comparison and
contrast of these tools, we identified further needs for
requirements documentation that have not been ade-
quately addressed. Therefore, we proposed the adoption
of the Vixtory tool and illustrated how it can be used to
flexibly document requirements for agile development.

As Vixtory is a prototype tool, we do not yet have
enough feedback from the Vixtory tool production use.
The feedback upon the initial experimental use of Vix-
tory has been positive. The project managers, in particu-
lar, like the tool. An obvious reason is that the tool makes

end user participation easier and it offers less vague and
ambiguous requirements due to the actual target system
context. In the future, we need to empirically evaluate the
acceptability of the tool, asking more stakeholders on
their experiences. We currently expect to gain experience
from industrial and student software projects. We are
particularly interested in the users’ communities feed-
back for improvement.

REFERENCES

[1] K. Beck, “Extreme Programming Explained: Embrace
Change,” Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[2] A. Cockburn, “Agile Software Development: The Coop-
erative Game,” 2nd edition, Addison-Wesley Professional,
2002.

[3] G. Kotonya and I. Somerville, “Requirements Engineer-
ing: Processes and Techniques,” John Wiley & Sons,
Chichester, 1998.

[4] IEEE Recommended practice for software requirements
specification. IEEE Standard 830-1998, 1998.

[5] H. F. Hofmann and F. Lehner, “Requirements Engineer-
ing as a Success Factor in Software Projects,” IEEE Soft-
ware, Vol.18, No.4, 2001, pp. 58-66.

[6] U. Nikula, J. Sajaniemi and H. Kälviäinen, “A State-of-
the-practice Survey on Requirements Engineering in
Small- and Medium-Sized Enterprises,” Research Report,
Telecom Business Research Center, Lappeentanta, 2000.

[7] Vixtory, “Tell your story”. http://www.vixtory.com/

[8] K. Pohl. “The Three Dimensions of Requirements Engi-
neering: A Framework and its Applications,” Information
Systems, Vol. 19, No. 3, 1994, pp.243-258.

[9] C. Rolland and N. Prakash, “From Conceptual Modelling
to Requirements Engineering,” Annals of Software Engi-
neering, Vol. 10, No. 1-4, 2000, pp.151-176.

[10] The Standish Group, “Chaos Chronicles Version 3.0.”,
2003. http://www.standishgroup.com/chaos/

[11] Agile manifesto, 2001. http://agilemanifesto.org/

[12] E. Berki, “Formal Metamodelling and Agile Method En-
gineering in MetaCASE and CAME Tool Environ-
ments,” The 1st South-East European Workshop on For-
mal Methods, South-Eastern European Research Center
(SEERC): Thessaloniki, 2004, pp. 170-188.

[13] B. Ramesh and M. Jarke, “Toward Reference Models for
Requirements Traceability,” IEEE Transactions on Soft-
ware Engineering, Vol. 27, No.1, 2001, pp.58-93.

[14] C. Ghezzi, M. Jazayeri and D. Mandrioli, “Foundamen-
tals of Software Engineering,” 2nd Edition, Prentice Hall,
2003.

[15] E. Georgiadou, K. Siakas and E. Berki, “Agile Method-
ologies and Software Process Improvement,” Proceedings
of the Virtual Multi Conference on Computer Science and
Information Systems, Virtual Online Conference, 2005,

Towards Lightweight Requirements Documentation

Copyright © 2010 SciRes. JSEA

889

pp. 412-417.

[16] P. Zave, “Classification of Research Efforts in Require-
ments Engineering,” ACM Computing Surveys, Vol. 29,
No. 4, 1997, pp. 315-321.

[17] P. Louridas, “Using Wikis in Software Development,”
IEEE Software, Vol. 23, No. 2, 2006, pp. 88-91.

[18] B. Decker, E. Ras, J. Rech, P. Jaubert and M. Rieth,
“Wiki-Based Stakeholder Participation in Requirements
Engineering,” IEEE Software, Vol. 24, No. 2, 2007, pp.
28-35.

[19] C. Lee and L. Guadagno, “FLUID: Echo–Agile Require-
ments Authoring and Traceability,” Proceedings of the
2003 Midwest Software Engineering Conference, Chi-
cago, June 2003, pp. 50-61.

[20] B. Boehm, “Requirements that Handle IKIWISI, COTS,
and Rapid Change,” Computer, Vol. 33, No. 7, 2000, pp.
99-102.

[21] Z. Zhang and J. Kaipala, “A Conceptual Framework for
Component Context Specification and Representation in a
MetaCASE Environment,” Software Quality Journal, Vol.
17, No. 2, 2009, pp.151-175.

[22] O. Gotel and A. Finkelstein, “An Analysis of the Re-
quirements Traceability Problem,” Proceedings of the 1st
International Conference on Requirements Engineering
(ICRE '94), Colorado, 18-22 April 1994, pp. 94-101.

[23] INCOSE requirements Management Tool Survey. http://
www.paper-review.com/tools/rms/read.php

[24] A. Forward and T. C. Lethbridge, “The Relevance of
Software Documentation, Tools and Technologies: A
Survey,” Proceedings of the 2002 ACM symposium on
Document engineering, McLean, Virginia, USA, ACM
Press, pp. 26-33.

[25] A. Persson and J. Stirna, “Advanced Information Systems
Engineering,” 16th International Conference, CAiSE,
Riga, Latvia, June 7-11, 2004, Proceedings.

[26] A. Manninen and E. Berki, “An Evaluation Framework
for the Utilisation of Requirements Management Tools-
Maximising the Quality of Organisational Communica-
tion and Collaboration,” Proceedings of BCS Software
Quality Management 2004 Conference, British Computer
Society: Swindon, 2004, pp. 139-160.

[27] C. Heitmeyer, J. Kirby and B. Labaw, “Tools for Formal
Specification, Verification, and Validation of Require-
ments,” Proceedings of the 12th Annual Conference
(COMPASS’97).

[28] B. Kernighan, “Sometimes the Old Ways are Best,” IEEE
Software, Vol. 25, No. 6, 2008, pp. 18-19.

[29] G2One Inc., Grails Web Application Framework, http://
grails.org/

[30] M. Arvela, M. Muhonen, M. Piipari, T. Poranen and Z.
Zhang, “Agile Tool-Managing Requirements in Agile
WWW Projects,” Proceedings of BIR 2008, Gdansk, 2008,
pp. 211-215.

J. Software Engineering & Applications, 2010, 3, 890-893
doi:10.4236/jsea.2010.39104 Published Online September 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Investigating the Suitability of Agile Methods for
Requirements Development of Home Care Systems

Sandra Kelly, Frank Keenan

Dundalk Institute of Technology, Dundalk, Ireland.
Email: {sandra.kelly, frank.keenan}@dkit.ie

ABSTRACT

The ageing population in developed countries brings many benefits but also many challenges, particularly in terms of
the development of appropriate technology to support their ability to remain in their own home environment. One par-
ticular challenge reported for such Home Care Systems (HCS) is the identification of an appropriate requirements de-
velopment technique for dealing with the typical diverse stakeholders involved. Agile Methods (AMs) recognize this
challenge and propose techniques that could be useful. This paper examines the desirable characteristics identified for
requirements development in HCS and investigates the extent to which agile practices conform to these. It also sets out
future work to improve the situation for the non compliant points found.

Keywords: Home Care Systems (HCS), Agile Methods, Requirements Development

1. Introduction

According to the World Health Organisation (WHO), the
population of over 60s in developing countries is ex-
pected to triple from “400 million to 1.7 billion” over the
next forty years [1]. Rising healthcare costs and lack of
resources in terms of hospitals and the availability of
skilled doctors and nurses mean that by 2050, this situa-
tion will become unsustainable. In Ireland 11% of the
population is currently over 65 and this is expected to
double over the next 25 years, in particular a threefold
increase in those aged 80 and above is expected [2]. Ac-
commodating the ageing population is and will continue
to be an increasing challenge. For example, Technology
Research for Independent Living (TRIL) report that 40%
of older people are prematurely institutionalised due to
injuries sustained from falls in the home [3]. In general it
is beneficial to develop alternative approaches to prevent
or delay the institutionalisation of older people, enabling
the elderly to remain at home. This has subsequently
required an increase in the need to develop HCS.

HCS is defined as “a potentially linked set of services
including social care and health care that provide or
support the provision of care in the home” [4]. Along
with the cared person, many other stakeholders are in-
volved including family members, social care, home help,
health nurses and GPs. Given such diversity of back-
ground, perspective and experience, and perhaps geo-
graphic distribution, identification, access to and en-

gagement of the appropriate stakeholders to identify re-
quirements is difficult. To complicate things further,
modes of interaction are expected to be subject to con-
tinuous change over time as the condition of the home
dweller may change [5]. Identification of a more suitable
approach for requirements development is necessary.

Despite the numerous techniques that exist for re-
quirements development [6] and, indeed, efforts made to
classify them [7,8] it is claimed that current techniques
are inadequate, while McGee-Lennon suggests that a
novel approach is required. Despite this, it is acknowl-
edged that potential does exist if techniques could be
modified to deal with a “combination of multiple distrib-
uted and possibly conflicting stakeholder needs” along
with “long term configuration and evolution of these
needs” [5]. In general, for HCS, any approach should be
“lightweight enough to be useable yet rigorous so as to
be justifiable” [4].

A potential solution may however be offered through
the principles and practices suggested by agile develop-
ment. The Agile Manifesto promotes values of close and
continuous interaction between all interested stake-
holders, including the customer and development team,
very short iterations of fully working, and tested, soft-
ware, which provides the ability to easily accommodate
changing requirements [9]. At an initial inspection it
appears that the characteristics of agile development
closely match those identified for HCS.

This paper compares the desirable characteristics of

Investigating the Suitability of Agile Methods for Requirements Development of Home Care Systems

Copyright © 2010 SciRes. JSEA

891

requirements development in HCS identified by [5] with
the general approach recommended for handling re-
quirements in agile development. Section 2 looks at how
requirements are developed in an agile setting, Section 3
compares the characteristics of HCS with AMs, while
Section 4 concludes the paper and outlines future work.

2. Agile Requirements Development

AMs recommend a highly participative and iterative ap-
proach to requirements development [10]. Initially, re-
quirements are briefly documented, typically through
user stories. Usually for user stories a high level user
request is written on an index card or post-it note. Along
with specific functionality required, other relevant in-
formation such as story title, release date, order of prior-
ity, author’s initials and time estimates to complete can
also be included. During development, each story is used
to provoke an in-depth discussion between developers
and other stakeholders to examine each requirement in
detail [11].

Initially, collectively, user stories identify a high level
plan for each release of the project. The customer priori-
tizes each story according to business value. Attention is
then focused on the first release with a number of priori-
tized stories used to identify the first short iteration.
Typically this is a week or two in length [10]. Developers
further divide the stories into tasks and estimate a time-
frame to complete each task. It is expected that each
story is considered to be a placeholder, indicating that an
in-depth analysis will be conducted during the iteration.

User stories and their associated tasks are placed to-
gether on a publicly-visible story board. The board fre-
quently referred to as “the wall” by [12], is the main fo-
cal point of the room. Developers choose a story to com-
plete from the board and commit to this by signing their
initials on the story card and taking it from the board for
development. When the user story is complete, the de-
veloper ticks the card and returns it to a new position on
the story board. Alternatively, if the story is not fully
complete, the card is considered to be still pending and is
returned to the same position on the board. Complete
stories become features of the system where they can be
further developed in upcoming iterations.

The story board provides a clear indication of what
work has been done and what has yet to be completed.
Stories placed with their tasks also allow developers to
envisage dependencies, essentially providing a visual
representation of the work plan to the team. The colour
of a card can also be used to convey specific meaning
and can indicate warning signs. Some examples from [12]
showed:
 Green cards signified stories, white for tasks;
 Blue cards related to features for staff;

 Orange flags indicated incomplete acceptance tests;
 Pink cards described bugs.
The positioning of the cards on the story board can

also communicate specific meaning. The top three rows
for instance in [13] contained recently completed stories.
To the left of the board were scheduled stories and to the
right were unscheduled stories.

2.1. The Customer Role

A key role for successful requirements development
within AMs is that of the customer, which differs from
that expected in a traditional development project, for
example with the waterfall approach the customer is in-
volved at the beginning of a project and the relationship
between the customer and the development team through-
hout the project is contractual, whereas AMs prefer the
customer to be continuously involved for the duration of
the project. However, a misconception with early AMs is
that customer involvement was often reduced to a single
on-site customer with little guidance provided on how to
implement this role.

In distinguishing between traditional and agile Re-
quirements Engineering (RE) practice in industry, Cao &
Ramesh found that the “inability to gain access to the
customer and obtaining consensus among stakeholder
groups” were the most common challenges experienced
[14]. Martin et al. report eight practices that were used in
successful projects to enable real customer involvement
[15]. The authors illustrate the complexity of customer
representation, identifying ten roles on a customer team,
these were informally created with little prior guidance to
support the customer role. Each person on the customer
team negotiates with and represents a widely diverse
group of stakeholders.

Many authors have expressed the importance of hav-
ing the appropriate and relevant stakeholders on board. In
examining critical success factors in software develop-
ment, Boehm and Turner found that the customer role
should comprise of individuals who are Collaborative,
Representative, Authorized, Committed and Knowl-
edgeable (CRACK), deeming these crucial attributes
stakeholder representatives should possess in imple-
menting the customer role [16]. Hence, performing the
customer role in agile projects is a challenging task, fre-
quently taken for granted.

3. Agile Methods for HCS?

McBryan et al. identify ten desirable characteristics an
RE method should possess for HCS [5]. Table 1 summa-
rizes these characteristics in column 1 with an indication
of how AMs match these in column 2. Two ticks indicate
that AMs comply fully with the characteristic, one tick
indicates partial compliance and ‘x’ indicates no compli-

Investigating the Suitability of Agile Methods for Requirements Development of Home Care Systems

Copyright © 2010 SciRes. JSEA

892

Table 1. HCS characteristics and agile methods compliancy
mapping.

Characteristics AMs

Iterative development 

Prioritization 

Correlation with other processes 

Appropriate stakeholders 

Participatory elicitation 

Identification of conflict 

Resolution of conflict 

Retention & traceability 

Annotation 

Distributed elicitation 

ance with the characteristic. The following points discuss
the varying degrees of compliance between these.

Iterative development: with AMs, short iterations of
fully working software provide opportunities for con-
tinuous stakeholder input. Perceived needs can be clari-
fied and new ones emerge. As circumstances change re-
quirements will evolve based on stakeholder input. This
is a characteristic AMs are fully compliant with.

Prioritisation of requirements: different stakeholders
may need to be given different priorities depending on a
variety of circumstances. Specifically in [5], the authors
point out that in relation to particular features, if for in-
stance, usability is an issue then the needs of the person
in care may be the highest priority whereas care profes-
sionals may have higher priority requirements if it is the
case that the person concerned is a “risk to themselves or
others” in the home environment. AMs are fully compli-
ant with this characteristic as features can be prioritized
at the beginning of each iteration.

Correlation with other processes and work practices
calls for immediate benefit from solutions required. This
is entirely consistent with the agile approach which pro-
motes the early delivery of high quality ‘working soft-
ware’ to satisfy the customer’s business objective.

Identification and Engagement of appropriate stake-
holders is partially compliant as AMs recognize the need
for this. Although this is promoted within AMs and nu-
merous successes have been reported, difficulties have
emerged in certain situations particularly when multiple
stakeholders are involved. However, no generalized
method as such can be applied here since realizing this
depends on constraints and circumstances often unique to
each situation.

Participatory elicitation and negotiation requires those

involved in a care network including the cared person to
negotiate the suitability of a potential device or care ser-
vice proposed. Essentially, an opportunity to demonstrate
a candidate device or interaction mode to stakeholders in
advance of decisions to be made is necessary. This char-
acteristic is partially compliant as Active Stakeholder
Participation (ASP) is encouraged in AMs but achieving
this in practice remains problematic.

Identification of conflict partially complies since AMs
encourage conflict to be aired as soon as possible but this
is often challenging if relevant stakeholders are not ac-
tively involved or, as is frequently reported, only identi-
fied during the latter stages of development.

Resolution of conflict partially complies, although the
need to air and resolve conflict early is recognized, suc-
cess here is again dependent on stakeholders’ active par-
ticipation in the project.

Retention and traceability of requirements is partially
compliant since AMs only retain artefacts such as user
stories for as long as they are deemed useful. Agile prac-
titioners recommend questioning traceability in terms of
time to complete and the re-examination of what value it
brings to stakeholders. This is to ensure that while trace-
ability may be needed, it must be applied in a timely
manner. An option here is to employ an appropriate pro-
ject management tool that does not detract from the
overall effort required in developing and maintaining the
software solution. Examples of available tools include
Envision VIP 9 and PACE 3.

Annotations to facilitate negotiation and traceability, is
also partially compliant as story cards are often annotated.
However, it is likely that agile practitioners would inte-
grate the annotation as a main part of the user story. In
particular, this characteristic intends to add further con-
text to a requirement.

Distributed elicitation is a characteristic AMs are par-
tially compliant with since although AMs prefer face to
face communication, other means such as email and
video conferencing are most often used for dispersed
stakeholders. In addition to tools mentioned previously,
other tools, particularly XPlanner and TargetProcess en-
able distributed teams to communicate with geographi-
cally dispersed stakeholders.

Here, AMs are fully compliant with three characteris-
tics of a desirable approach to requirements development
in HCS. However, AMs show only partial compliance
with the remaining seven characteristics indicating future
work needed to improve on these.

4. Conclusions and Further Work

In summary, due to the expected increase in older popu-
lations, the need to develop HCS is evident. Success in
software systems heavily depends on accurately obtain-

Investigating the Suitability of Agile Methods for Requirements Development of Home Care Systems

Copyright © 2010 SciRes. JSEA

893

ing requirements from stakeholders. It is also difficult to
identify access, engage and support continuous negotia-
tion of requirements amongst relevant stakeholders. De-
spite the numerous elicitation techniques available, ac-
commodating diversity amongst multiple stakeholder
groups remains a key challenge. Suggestions made to
improve on this include a new or adaptive approach to
requirements development, However it is not entirely
clear how this could be achieved. AMs may provide a
solution but particularly, an important concern here is in
effective implementation of the customer role. This paper
compared the desirable characteristics for RE in HCS
with agile methods and indicates that there is a close
match. However, challenges still exist as AMs are only
partially compliant with many of the remaining charac-
teristics. Future work will investigate how this position
can be further improved.

REFERENCES

[1] World Health Organization (WHO), “Public Health Impli-
cations of Global Ageing,” 2010. http://www.who int/fea-
tures/qa/42/en/index.html

[2] S. Roberts, T. Basi, A. Drazin and J. Wherton, “Connec-
tions: Mobility and Quality of Life for Older People in
Rural Ireland” Intel Corporation, America, 2007.

[3] Technology Research for Independent Living (TRIL)
“Falls Prevention,” 2010. http://www.trilcentre.org/falls_
prevention/falls_prevention.474.html

[4] M. R. McGee-Lennon, “Requirements Engineering for
Home Care Technology,” Proceeding of the 26th Annual
SIGCHI Conference on Human Factors in Computing
Systems, Florence, Italy, 2008, pp. 1439-1442.

[5] T. McBryan, M. R. McGee-Lennon and P. Gray, “An
Integrated Approach to Supporting Interaction Evolution
in Home Care Systems,” Proceedings of the 1st interna-
tional Conference on Pervasive Technologies Related To
Assistive Environments, Athens, July 2008, pp. 1-8.

[6] A. Davis, O. Dieste, A. Hickey, N. Juristo and A. M.
Moreno, “Effectiveness of Requirements Elicitation
Techniques: Empirical Results Derived from a Systematic
Review,” Proceedings of 14th IEEE International Con-
ference of Requirements Engineering, Minneapolis, Sep-
tember 2006, pp. 179-188.

[7] H. Van Vliet, Ed., “Software Engineering Principles and
Practice,” John Wiley & Sons Ltd., Chichester, 2000.

[8] B. Nuseibeh and S. Easterbrook, “Requirements Engi-
neering: A Roadmap,” Proceedings of International Con-
ference on Software Engineering, ACM Press, Limerick
Ireland, 2000.

[9] K. Beck, et al. “The Agile Manifesto,” 2001. http://www.
agilealliance.com

[10] S. W. Ambler, “Agile Modeling: Effective Practices for
Extreme Programming and the Unified Process,” John
Wiley & Sons Inc., Chichester, 2002.

[11] D. Astels, G. Miller and N. Miroslav, “A Practical Guide
to Extreme Programming,” Prentice Hall, New Jersey,
2002.

[12] H. Sharp, H. Robinson, J. Segal and D. Furniss, “The
Role of Story Cards and the Wall in XP teams: A Distrib-
uted Cognition Perspective,” Proceedings of Agile, IEEE
Computer, Society Press, Washington, DC, 2006, pp. 65-
75.

[13] W. Pietri, “An XP Team Room,” 2004. http://www.scis-
sor .com/resources/teamroom

[14] L. Cao and B. Ramesh, “Agile Requirements Engineering
Practices: An Empirical Study,” Software, IEEE, Vol. 25,
No. 1, 2008, pp. 60-67.

[15] A. Martin, R. Biddle and J. Noble. “XP Customer Prac-
tices: A Grounded Theory,” Proceedings of Agile Con-
ference, agile, Chicago, August 2009, pp. 33-40.

[16] B. W. Boehm and R. Turner, “Using Risk to Balance
Agile and Plan-Driven Methods,” Computer, Vol. 36, No.
6, 2003, pp. 57-66.

J. Software Engineering & Applications, 2010, 3, 894-900
doi:10.4236/jsea.2010.39105 Published Online September 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Introduction to a Requirements Engineering
Framework for Aeronautics

Robert Abo

Cedric Laboratory, Conservatoire National des Arts et Métiers, Paris, France.
Email: robert.abo@cnam.fr

ABSTRACT

This paper introduces a framework to produce and to manage quality requirements of embedded aeronautical systems,
called the ‘Requirements Engineering Framework’ (REF). It aims at making the management of the requirement lifecy-
cle easier, from the specification of the purchaser’s needs, to their implementation in the final products, and also their
verification, while controlling costs. REF is based on the main standards of aeronautics, in particular RTCA DO-254,
and RTCA DO-178B standards. An implementation of REF, using the IBM Rational DOORS and IBM Rational Change
tools, is also presented in this paper.

Keywords: Aeronautics, Requirements Engineering, RTCA DO-254 and RTCA DO-178B Standards, V-Model

1. Introduction

To ensure the safety and the reliability of the aircraft’s
embedded systems, airworthiness authorities (e.g. US
Federal Aviation Administration [1], European Aviation
Safety Agency [2], UK Civil Aviation Authority [3], etc.)
require that they are built under control of processes
based on international standards. Among these standards,
the main two used in the civilian domain are the
well-known RTCA DO-254 ‘Design Assurance Guid-
ance for Airborne Electronic Hardware’ standard (aka
EUROCAE ED-80) [4] for hardware components and the
RTCA DO-178 ed. B ‘Software Considerations in Air-
borne Systems and Equipment Certification’ standard
(aka EUROCAE ED-12) [5] for software components.
They are referred to as the ‘DO standards’ throughout
this paper.

In this article, we introduce the ‘Requirements Engi-
neering Framework’ (REF for short), which aims at
producing and managing quality requirements, in order
to produce safe and secure embedded aeronautical sys-
tems, that must adhere to the rigorous constraints of in-
ternational standards, while controlling costs. This is
achieved by using formalized and mature processes as
presented in the following sections. The REF described
in this article, does not refer to the practices of a particu-
lar supplier or a particular firm in aeronautics.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the basic notions of requirements
management, which form REF foundations. Section 3

presents an implementation of REF, which uses the IBM
Rational DOORS tool [6] to manage requirements and to
carry out requirement traceability, and IBM Rational
Change tool [7] to manage changes between work teams.
Section 4 is dedicated to the safety activities, while Sec-
tion 5 concludes this paper.

2. Requirements Management

2.1. System Lifecycle Model

DO-254 does not prescribe a preferred lifecycle model,
nor imply a structure for the performing organization. In
the same manner, DO-178B does not designate a pre-
ferred software lifecycle, but describes the separate
processes that comprise most lifecycles and the interac-
tion between them. The lifecycle for each project should
be based on selection, and arrangement of processes and
activities determined by the attributes of the project.

Several system lifecycle models exist in system engi-
neering, with different approaches on the manner of
leading a project to develop a system: waterfall, V-model,
iterative, spiral, agile, and so on. Each one has its pros
and cons, and it is up to the chief technical officer and
project leaders to determine the most suitable model to
lead the projects of their company.

REF is based on V-model [8] (aka “Vee model”),
which is a variation of the waterfall model. This choice is
explained by its advantages. First, it is simple, well or-
ganized, and easy to use and to implement. In particular,
it highlights the correspondences between the develop-

Introduction to a Requirements Engineering Framework for Aeronautics

Copyright © 2010 SciRes. JSEA

895

ment phases (i.e. the descending stages, from the early
specification to the implementation) and the verification
phases (i.e. the ascending stages, from the implementa-
tion to the product delivery). Thus, it facilitates not only
requirement traceability, but also the production of the
certification documents required by DO standards, as we
will explain in the following sections. Another great ad-
vantage of V-model is it can be tailored into a specific
project-oriented V-model, because it is independent from
any organization and any project. It also provides assis-
tance on the way to implement an activity, and it sup-
ports a wide range of development methodologies, in
particular formal methods [9-11] often use to develop
critical parts of systems.

Among disadvantages of V-model, it is project-oriented
instead of addressing the development of systems within
a whole organization. Another V-model disadvantage is
it fails at covering the maintenance of systems. But, these
disadvantages do not impact REF.

2.2. Basics

The concept of requirement is in the middle of systems
engineering, as the abundant literature on the subject
attests it [12-15]. We define a ‘requirement’ as a cus-
tomer’s elementary need that is to be implemented in the
product or service that he receives1. In systems engineer-
ing, we can refine this rough definition by distinguishing
the characteristics of the system to be built, known as the
functional requirements, from the ways the system
achieves its functions, known as the non-functional re-
quirements (e.g. performance, quality, interface require-
ments, etc.). We can also differentiate the customer’s
needs, from which the supplier’s distributed requirements
are issued, among three hierarchical levels, which are the
system, the high-level and the low-level requirements
sets. From now on, by “customer”, we mean not only the
purchaser of the building system, but also the supplier’s
teams who require services from other ones along an
enterprise workflow dedicated to requirements manage-
ment. Thus, we distinguish four main requirement levels
according to their refinement level, plus a requirement
implementation level as shown in Figure 1:

1) The ‘purchaser’s level’ corresponds to the pur-
chaser’s specifications seen as a set of rough
needs developed in the ‘Purchaser Specification’
(PuS) document.

2) The ‘system level’: the purchaser’s needs are re-
fined and reformulated, by using technical terms
understandable for the development teams. The

system requirements are collected in the ‘System
Specification’ (SyS) document. It is possible to
refine this level, by considering a sub-level dedi-
cated to the embedded equipment.

3) The ‘high-level requirements (HLR) level’. The
notion of sub-system appears, and hardware re-
quirements are distinguished from software ones
at this level. High-level requirements are devel-
oped from the analysis and refinement of system
requirements, system architecture, safety-related
needs and derived requirements. The latter cor-
respond to requirements that are the result of the
sub-system development process, and may not be
directly traceable to high-level requirements. The
HLR are collected in the ‘Hardware Requirement
Specification’ (HRS) and the ‘Software Re-
quirement Specification’ (SRS) documents.

4) The ‘low-level requirements (LLR) level’.
Low-level requirements are developed from the
high-level requirements, sub-system architecture,
and design constraints, by refinement and refor-
mulation. The hardware and software subsystems
are directly developed from the LLR. The LLR
are collected in the ‘Hardware Design Document’
(HDD) and the ‘Software Design Document’
(SDD).

5) The ‘implementation level’ is the last level and
marks the end of the descending phase of the
V-model. It corresponds to the hardware compo-
nents and the source code. The implementation of
a requirement consists in giving this requirement
an existence from its specification as it appears in
the HDD (for hardware components) or in the
SDD (for software components).

Requirements are fundamental. Firstly, the supplier’s
requirements formalize the customer’s needs. The sup-
plier ensures the comprehension of the customer’s needs,
that he has translated this into a form he can use without
any misunderstanding. Secondly, requirements allow the
identification of the characteristics of the customer’s
needs. Finally, requirements simplify the taking into ac-
count of customer’s needs along V-model by formalizing
them. They show the customer that the final product an-
swers the needs he has expressed.

2.3. Requirements Specification

It consists of specifying the requirements. In particular,
engineers have to define the bi-directional and vertical
traceability between the upper and lower requirements.
The main objective of the requirement traceability is to
show that the purchaser’s needs are satisfied by system
requirements, high-level requirements, and low-level
requirements; and then implemented into the hardware

1DO-254 defines a requirement as “an identifiable element of a speci-
fication that is verifiable” [4]. DO-178B defines a software require-
ment as “a description of what is to be produced by the software given
the inputs and constraints” [5].

Introduction to a Requirements Engineering Framework for Aeronautics

Copyright © 2010 SciRes. JSEA

896

Figure 1. The documents of a project, issued at the different
stages of V-model with (1): System level requirement vali-
dation matrix; (2): Specification Analysis Matrix (DO); (3):
Design Analysis Matrix (DO); (4): Hardware/Code Analysis
Matrix (DO). The requirements are produced by successive
refinements along the descending phases of V-model. In the
figure, ‘TP’ stands for Test Plans, and ‘Q’ for Quality.

components or the source code.

2.4. Requirements Justification

All the supplier’s requirements at any level have to be
justified. A justification records the reasons for a re-
quirement’s existence, and its compliance with a cus-
tomer’s need. It also records the reasons for the imple-
mentation choices; and it keeps the analysis for the future
designs and the modification assessments. Finally, it jus-
tifies the activities link to requirements, in particular the
safety ones. Requirement justifications make the re-
quirement analysis phase easier.

2.5. Requirements Review and Analysis

This phase is also referred to as “requirements valida-
tion”. Its purpose is to ensure that all the customer’s
needs are specified (i.e. there is no under-specification of
the customer’s needs) and nothing more than these needs
is specified (i.e. there is no over-specification of the cus-
tomer’s needs). Moreover, this analysis consists in en-
suring that the requirements at each level are good and
well-specified requirements, i.e. they are sufficiently
correct, complete, unambiguous, consistent, self-contained,
achievable, verifiable, etc., so the delivered product will
meet all the customer’s needs and airworthiness authori-
ties’ constraints including DO requirements.

We must notice that whether the writers and the re-
viewers are the same engineers, they cannot perform the
validation of the requirements they specified, in particu-
lar for the requirements of the most critical software re-

ferred to as Level A or Level B by the DO-178B stan-
dard2. Project managers and team leaders must organize
the work of the engineers taking this into account. A spe-
cific team performs the safety activities as described in
Section 4.

2.6. Requirements Verification

This activity deals with the rise of V-model. It consists in
evaluating the implementation of the supplier’s require-
ments to determine, whether or not, they have been met.
There are several means of verification: tests, code
analysis, model checking, simulation, etc. For aeronau-
tics real-time embedded software, the low-level require-
ments are often implemented by using the Esterel Tech-
nologies’ SCADE Suite [16]. This tool complies with
DO-178B, and allows for generation of a certified source
code from low-level requirements without any unit tests.

3. Implementing REF

The REF processes are implemented through two main
tools namely: IBM Rational DOORS [6] for the man-
agement of requirements, and IBM Rational Change [7]
for the management of changes impacting requirements.
This choice and the use of these tools are not mandatory,
and other ones with similar functionalities can be used,
according to the final customer’s choices. Reviewing all
of them is out of the scope of this paper, but we can
quote Geensoft's Reqtify [17] or IBM Rational Requi-
sitePro [18] as other examples of requirements manage-
ment tools. IBM Rational ClearQuest [19] and Serena
TeamTrack [20] are other examples of change manage-
ment tool.

3.1. Requirements Management

DOORS is a requirements management tool that provides
an easily collaborative environment, to make the
achievement of processes linked to the specification, the
analysis, the verification and the traceability of require-
ments easier.

3.1.1. Data Organization
Data is stored in DOORS databases, each of which are
organized as folders, projects and modules. Projects are
specific folders that contain data related to a particular
project. They can contain folders and sub-folders, both
contain modules. We define a module as a collection of
objects with attributes, each of which relate to a particu-
lar topic. Each module has its own attributes as name,
type, description, date of creation and so on. Different
2Software level is based upon the contribution of software to potential
failure conditions as determined by the system safety assessment proc-
ess. Their effects on the aircraft, the crew and the passengers categorize
the failure conditions. They spread out from ‘A’ (catastrophic effects),
to ‘E’ (no effects) [5].

Introduction to a Requirements Engineering Framework for Aeronautics

Copyright © 2010 SciRes. JSEA

897

kinds of modules can be defined.
Each project should contain at least:
1) Modules for customer specification;
2) Modules for system, high-level and low-level re-

quirements;
3) Modules for applicable standards, documents,

and plans;
4) Modules for requirement verification (test cases,

test procedures, results, and analysis);
5) Modules for requirement justification;
6) Modules for requirement validation.
Within a module, objects can be organized in a hier-

archical manner. Information is displayed through views
that can filter attributes according to user choice. Objects
can be linked together, in particular hierarchical objects,
which is very important to define objects traceability. It
is possible to define several kinds of objects:

1) Requirements collected in the specification mod-
ules;

2) Validation objects collected in the validation
modules;

3) Justification objects collected in the justification
modules;

4) Verification objects collected in the verification
modules;

5) Other objects in particular texts, that can contains
titles, notes, remarks or any other textual expla-
nations that are not requirements but are useful to
understand the specifications. Indeed, we must
keep in mind that these modules can be published
as official documents for the purchaser and the
end users.

DOORS administrators can regularly create module
baselines, which are frozen modules that cannot be
modified. They record the history of the module since its
last baseline, including information about objects, their
attributes, and also module sessions.

3.1.2. Documents Issues
DOORS allows exporting a module into several formats,
that can be Microsoft Office, HTML, FrameMaker, etc.
This functionality is particularly interesting to deliver
definitive documents to purchasers. It is possible to
choose the attributes to be printed on documents ex-
tracted from DOORS modules. In that case, the text of
the requirement is automatically put between the identi-
fication of the requirement and the ‘End of Requirement’
tag. The attributes to be printed should be, at least:

1) The requirement identifier;
2) The requirement text;
3) The upper requirement(s) covered by this re-

quirement;
4) The delivery version of the product where this

requirement appears.

3.2. Change Management

3.2.1. Basics
The configuration management process is interfaced with
IBM Rational Change [7]. Specifications, test cases, test
procedures and any documents are managed with
DOORS. Change is a web-based tool for change man-
agement solutions, allowing teams involved in the sys-
tem development to get together. Across the enterprise, it
tracks change requirement requests.

3.2.2. Process Description
Updates of requirements, justification, and validation
objects are decided by a committee. They are only au-
thorized through a change management process de-
scribed in the following text. Each modification or evo-
lution need is recorded through a Specification Change
Request (SCR) that details the origin of the evolution, the
standard of applications and the evolution need. This
SCR can lead to several Requirement Change Requests
(RCR), each of them impacting one or several require-
ments of a specific module. The Change tool traces the
links between an SCR and its RCRs. Each RCR is real-
ized in DOORS. Thus, each requirement modification
must be traced with the relevant RCR. Once the SCR is
approved in commission, the requirement or procedure is
then proposed for the validation process. An SCR or an
RCR can be reworked, if conflicts are detected. The SCR
manager can close an open SCR after having checked it:

1) All impacted requirements have been validated;
2) All modifications are well traced in DOORS;
3) All verification modules have been updated;
4) All impacts on lower and upper requirements

have been taken into account;
5) All justifications have been updated;
6) All impacts on previous standard specification

have been taken into account;
7) The standard of applicability has been clearly

identified.
Figure 2 shows the SCR and its associated RCRs life-

cycles, with the corresponding processes enabling to pass
from a stage to another.

3.3. Requirements Documentation

Some attributes are generic and DOORS automatically
manages them. These usually are the object identifier, its
date of creation, its date of last modification, the name or
the user identification, etc. The object identifier is unique,
and must contain the identification of the module that the
requirement belongs to, and a number. The module iden-
tifiers should be, at least: SYS for ‘System’, HW for
‘Hardware’, SW for ‘Software’, SAF for ‘Safety’, VAL

Introduction to a Requirements Engineering Framework for Aeronautics

Copyright © 2010 SciRes. JSEA

898

Figure 2. the SCR and RCRs lifecycles for REF. In general, several RCRs are associated to one SCR. RCRs permit to trace
requirements updates.

for ‘Validation’, JUS for ‘Justification’, and others nec-
essary identifiers as, for example, QLY for ‘Quality’,
PRG for ‘Programs’, etc. For requirements, there must be
the following major attributes. They have an impact on
the validation status.

1) A main description to describe the requirement. It
may contain drawings, tables, figures or mathe-
matical formulas.

2) An assumption or a set of assumptions for the
requirement, if any. Assumptions must be identi-
fied, justified, and validated.

3) The domain of activity, for example, SYS for
‘system’ level, HW for ‘hardware’, or SW for
‘software’ level.

4) The type of requirement: ‘derived’ requirements,
which are the results of the sub-system develop-
ment process and may not be directly traceable to
high-level requirements. A ‘terminal’ require-
ment cannot be traced to lower levels. A ‘normal’
requirement is neither derived nor terminal.

5) The delivery version of the system in which the
requirement appears (for example V0, V1.0, V1.1,
etc.). It is possible to qualify a version as ‘partial’
to indicate requirements are partially imple-
mented in it.

6) Links to requirements not under the DOORS con-
trol.

Even if it is obsolete, a requirement must never be de-
leted. This basic rule is necessary to avoid losing trace-
ability and to keep a trace of its existence. Besides, this

deletion must be justified in the justification object
linked to the deleted requirement.

Low-level requirements have specific attributes as the
identification of the function that calls it, the description
of its input and output parameters, etc., plus a data dic-
tionary in which all data, types, variables, constants, and
definitions of applications are defined.

3.4. Requirements Justification

The DOORS justification module embeds three catego-
ries of justification objects expected for certification is-
sues:

1) Justification of all the requirements (normal, de-
rived, and terminal).

2) Justification of the validation of requirements.
3) Justification of safety assessment of derived re-

quirements.
As far as possible, the requirement justification proc-

ess must be complete before entering the requirement
validation phase as the latter contains a checklist of crite-
ria to ensure completeness and correctness of this activ-
ity.

3.5. Requirements Review and Analysis

We perform two kinds of requirement analysis: the
transversal and the unitary analysis.

3.5.1. Unitary Analysis
It is requirement-oriented. The requirement conformity
with the DO standard criteria applicable to requirements

Introduction to a Requirements Engineering Framework for Aeronautics

Copyright © 2010 SciRes. JSEA

899

is checked using DOORS. All requirements are analyzed
one by one: the system requirements; the hardware
high-level and low-level requirements (DO-254 Subsec-
tions 6.1.2.2, 6.1.2.4 and 6.1.2.5) and also the software
high-level and low-level requirements (DO-178B, Sub-
sections 5.3.2 and 6.3.1). We check the quality of each
requirement i.e.:

1) Its adaptability for its level of specification, e.g.
no detailed requirement at system or high level,
or no rough and non refined requirement at low
level (requires by DO-178B Subsection 5.1.2 g
for SW);

2) Its completeness with no missing information, in
particular, concerning the acceptance criteria
(requires by DO-254 Subsection 6.1.2.4 for HW
and DO-178B Subsections 6.3.1a, b, d and 5.1.2 f
for SW);

3) Its correctness by expressing a need and not a
solution for that need; if possible, the contrary
must be rigorously justified (requires by DO-254
Subsection 6.1.2.5 for HW and DO-178B Sub-
section 5.1.2 g for SW);

4) Its consistency by not being contradictory with
other requirements of the same level (requires by
DO-178B Subsection 6.3.1 b);

5) Its feasibility by checking it can be implemented
on the target architecture (requires by DO-254
Subsection 6.1.2.5 for HW, and DO-178B Sub-
section 6.3.1 b, c, d for SW);

6) Its unambiguity and precision by checking that
nobody can interpret it (requires by DO-254
Subsection 6.1.2.5 for HW, and DO-178B Sub-
section 6.3.1 b and d);

7) Its verifiability by checking that its verification is
possible (requires by DO-254 Subsection 6.1.2.5,
and DO-178B Subsection 6.3.1 b, d for SW);

8) Its traceability by checking links with upper and
lower requirements (requires by DO-254 Subsec-
tion 6.1.2.4 and DO-178B Subsection 6.3.1 a);

9) Its conformance to standards (requires by DO-
178B Subsection 6.3.1 e);

10) Its algorithms (if any) must be accurate and cor-
rect (requires by DO-178B Subsection 6.3.1 g);

11) Its topicality by checking it does not refer to an
obsolete part of the system.

NB. Software scripts can be used to check general
rules automatically, that major attribute fields are not
empty, editing requirement rules are complied with, etc.
For this, each attribute must be correctly filled in.

3.5.2. Transversal Analysis
It is document-oriented. The DO standard criteria appli-
cable to a document are used to validate the whole

document from a quality point of view. It consists in
checking several points among which:

1) Its availability and its consistency;
2) Its compliance with the purchaser and airworthi-

ness standards;
3) The completeness of its references;
4) Its readability;
5) Its compliance and traceability with upper docu-

ments if any;
6) Its correctness, completeness and accuracy;
7) Its compliance with development standards;
8) Its maintainability.

3.6. Requirements Verification

Each requirement is associated to one or more test cases,
with each of them specifying the test objective with a
description. If the test case defines a test of the product
(laboratory, vehicle, flight, environment, etc.) then a
script or detailed procedure and the associated test results
shall be written. If the test case is defined by analysis, a
detailed procedure is used to reach the test result. Test
cases shall only specify the objective of the analysis. Test
results shall contain the full analysis and the result status
for each standard. Then three levels of verification mod-
ules are provided:

1) The test case level aiming at containing test
case(s) covering requirements. A tests case de-
scribes test sequences, objectives, input/output
conditions, required environment and accepted
criteria from a general point of view: no imple-
mentation details linked to test benching or par-
ticular tools need to be described, unless there are
particular constraints.

2) A detailed test procedure or script level that is the
implementation of test cases with regards to test
bench facilities, software capacities, specific
tools to be used, or other precise implementation
details required to ease test runs and avoid mis-
takes in test procedure execution. Test scripts are
dedicated to automated procedures and detailed
procedures to manual tests. Both can be used for
tests requiring manual sequences. For test cases
by analysis, the detailed procedure is used to
reach the test result.

3) A test result level containing all the verification
results.

4. Safety Analysis

The safety activities are exclusively related to the needs
impacting the safety of the system to be built. They affect
the documentation, the justification, and the validation of
safety-related requirements. An independent team of en-

Introduction to a Requirements Engineering Framework for Aeronautics

Copyright © 2010 SciRes. JSEA

900

gineers, referred to as the “safety team”, performs the
safety activities, that are based on the analysis of all the
safety-related requirements (normal, terminal, and de-
rived) that contribute to reach the customer’s safety
needs. A set of safety-oriented attributes is defined for
each requirement.

4.1. Safety Activities in Specification Modules

A special attribute should be used to mark any
safety-related requirement. It must adhere to the lower
requirements in order to identify requirement trees that
need a safety analysis precisely. If a requirement is not
safety-related, its attribute shall be set to ‘NO’. Safety
teams shall be specially warned of every evolution of this
attribute for each requirement. All updates of this attrib-
ute for any requirements must imply a new safety valida-
tion phase. When it is set to ‘YES’, this attribute must be
visible in the published version of specifications.

4.2. Safety Activities in Justification Modules

Different attributes should be used to justify the safety
aspect of a requirement. The first attribute should state
whether a requirement has an impact on the safety analy-
sis and must require special attention. The second should
detail the reasons why the previous attribute was filled as
‘YES’. Another one should detail the analysis performed
by the safety team in order to comply with the safety
objectives. Some other justification attributes should be
added.

4.3. Safety Activities in Validation Modules

Only the safety team fills out the attributes of these ob-
jects. They should record at least, the accepting of the
requirement in accordance with the safety criteria, the
reasons of the acceptance or the rejection, the name of
the engineer who performed the validation, and the date
of the validation in order to ensure it is still current.

5. Conclusion

This paper presents a general framework, which we have
called the “Requirements Engineering Framework” or
REF for short, dedicated to the management of require-
ments of aeronautical systems, during their whole lifecy-
cle. It aims at producing quality, secure and safe systems
in accordance with the rigorous DO constraints, while
controlling manufacturing costs. This framework can be
implemented in several ways according to the specific
needs of suppliers. In this paper, we have outlined the
interests of using DOORS [6] and Change [7] tools to
implement REF.

In a future paper, we envisage to describe the possible

implementations of REF in greater detail.

6. Acknowledgements

I would like to acknowledge the discussions and sugges-
tions from different persons including my work col-
leagues and my friends. I would like to acknowledge
especially Prof. Kamel Barkaoui of the Conservatoire
National des Arts et Métiers in Paris, France, who en-
couraged me to write this paper.

REFERENCES

[1] “US Federal Aviation Administration”. http://www.faa.gov/

[2] “European Aviation Safety Agency”. http://www.easa.eu.int

[3] “UK Civil Aviation Authority”. http://www.caa.co.uk

[4] RTCA DO-254 (EUROCAE ED-80), “Design Assurance
Guidance for Airborne Electronic Hardware,” 2000.

[5] RTCA DO-178B (EUROCAE ED-12B), “Software Con-
siderations in Airborne Systems and Equipment Certifica-
tion,” 2nd Edition, 1992.

[6] “IBM Rational DOORS”. http://www-01.ibm.com/software/
awdtools/doors/

[7] “IBM Rational Change”. http://www-01.ibm.com/software/
awdtools/change/

[8] “Das V-Modell”. http://v-modell.iabg.de/ (some pages
about the fundamentals of V-model are in English).

[9] C. M. Holloway, “Why Engineers Should Consider For-
mal Methods,” Proceedings of the 16th Digital Avionics
Systems Conference, Irvine, California, October 1997.

[10] N. A. S. A. Langley, “Formal Methods web site”. http://
shemesh.larc.nasa.gov/fm/

[11] “Formal Methods in System Design Journal,” Springer.
http://www.springer.com

[12] R. R. Young, “Effective Requirements Practices,” Addison
Wesley, Boston, 2001.

[13] K. E. Wiegers, “Software Requirements,” 2nd Edition,
Microsoft Press, 2003.

[14] K. E. Wiegers, “More About Software Requirements,”
Thorny Issues and Practical Advice, Microsoft Press,
2006.

[15] V. I. Fort Belvoir, “Systems Engineering Fundamentals,”
Defense Acquisition University Press, USA, 2001.

[16] “Esterel Technologies SCADE Suite”. http://www.esterel-
technologies.com/products/scade-suite

[17] “Geensoft Reqtify”. http://www.reqtify.com

[18] “IBM Rational RequisitePro”. http://www-01.ibm.com/
software/awdtools/reqpro/

[19] “IBM Rational ClearQuest”. http://www-01.ibm.com/
software/awdtools/clearquest/

[20] “Serena TeamTrack”. http://www.serena.com/products/
teamtrack/change-request-management.html

http://www-01.ibm.com/software/awdtools/doors/
http://www-01.ibm.com/software/awdtools/change/
http://www-01.ibm.com/software/awdtools/reqpro/
http://www-01.ibm.com/software/awdtools/clearquest/
http://www.serena.com/products/teamtrack/change-request-management.html

	cover 1

	cover 2

	cover 3

	cover 4

	JSEA Special Issue ONLINE.pdf
	Announcement_JSEA
	IWRA_editorial_final2
	JSEA Special Issue contents
	journal information jsea
	paper1
	paper2
	paper3
	paper4
	paper5
	paper6
	paper7
	paper8
	paper9
	paper10

