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Abstract 
By the distance or degree of vertices of the molecular graph, we can define 
graph invariant called topological indices. Which are used in chemical graph 
to describe the structures and predicting some physicochemical properties of 
chemical compound? In this paper, by introducing two new topological in-
dices under the name first and second Zagreb locating indices of a graph G, 
we establish the exact values of those indices for some standard families of 
graphs included the firefly graph. 
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1. Introduction 

Topological indices play a significant role mainly in chemistry, pharmacology, 
etc. (see [1]-[7]). Many of the topological indices of current interest in mathe-
matical chemistry are defined in terms of vertex degrees of the molecular graph. 
Two of the most famous topological indices of graphs are the first and second 
Zagreb indices which have been introduced by Gutman and Trinajstic in [8], 
and defined as ( ) ( ) ( )( )2

1 u V GM G d u
∈

= ∑  and ( ) ( ) ( ) ( )2 uv E GM G d u d v
∈

= ∑ , 
respectively. The Zagreb indices have been studied extensively due to their nu-
merous applications in the place of existing chemical methods which need more 
time and increase the costs. Many new reformulated and extended versions of the 
Zagreb indices have been introduced for several similar reasons (cf. [9]-[17]). 

One of the present authors Saleh [18] has recently introduced a new matrix 
representation for a graph G by defining the locating matrix ( )GLo  over G. 
We will redefine this representation as in the following. 
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Definition 1 ([18]) Let ( ),G V E=  be a connected graph with vertex set 
{ }1 2, , , nV v v v= 

. A locating function of G denoted by ( )GL  is a function 
( ) ( ) { }( ): 0

n
G V G +→ L  such that  
( ) ( ) ( ) ( )( )1 2, , , , , ,i i i i n iv d v v d v v d v v= =v L , where ( ),i jd v v  is the distance 

between the vertices iv  and jv  in G. The vector iv  is called the locating 
vector corresponding to the vertex iv , where i j⋅v v  is actually the dot product 
of the vectors iv  and jv  in the integers space { }( )0

n+
  such that iv  is 

adjacent to jv . 
The above locating function and huge applications of Zagreb indices moti-

vated us to introduce two new topological indices, namely first and second lo-
cating indices, based on the locating vectors. 

Definition 2. Let ( ),G V E=  be a connected graph with a vertex set 
{ }1 2, , , nV v v v= 

 and an edge set ( )E G . Then we define the first and second 
locating indices as 

( )
( )
( ) ( )

( )

2
1 2and ,

i i j
i i j

v V G v v E G
M G M G

∈ ∈

= = ⋅∑ ∑v v v   

respectively. 
All graphs in this paper will be assumed simple, undirected and connected 

unless stated otherwise. For graph theoretical terminologies, we refer [19] to the 
readers. 

2. Some Exact Values in Terms of Locating Indices 

In this section, by considering Definition 2, we determine the first and second 
locating indices for the standard graphs nK , nC , ,n mK , nW , nP , and also for 
the join graph 1 2G G G≅ +  such that 1G  and 2G  are both connected graphs 
with diameter 2 and G will be assumed as 3C , 5C -free graphs. 

Theorem 3. Let nG K≅  be the complete graph with a vertex set  

( ) { }1 2, , , nV G v v v= 
, where 2n ≥ . Then ( ) ( )1 1nM K n n= −  and  

( ) ( )( )
2

1 2
2n

n n n
M K

− −
= . 

Proof. Let iv  be a locating vector corresponding to the vertex ( )iv V G∈ . 
Then ( )1 2, , ,i na a a=v 

 such that 0ia =  and 1 1ia + = . Thus ( )2 1i n= −v . 
But we have total n vertices in ( )V G , and so ( ) ( )1 1nM K n n= − , as required. 
On the other hand, for any two locating vectors iv  and jv , where i j≠ , we  

definitely have 2i j n⋅ = −v v . Hence ( ) ( )( )
2

1 2
2n

n n n
M K

− −
= . 

In the next two Theorems, we investigate the cycle nC  depends on the status 
of n. 

Theorem 4. For an even integer 2n ≥ , let nG C≅ . Then  

( )
( )2

1

2

12n

n n
M C

+
=  and ( ) ( )22

2

2
12n

n n
M C

−
= . 

Proof. By labeling the vertices of the cycle nC  as { }1 2, , , nv v v
 in the anti-

clockwise direction, we obtain 
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1 0,1, 2,3, , , 1, 2, ,1 ,
2 2 2
n n n = − − 

 
v    

2 1,0,1, 2, , 1, , 1, , 2 ,
2 2 2
n n n = − − 

 
v    

3 2,1,0,1, , 2, 1, , ,3 ,
2 2 2
n n n = − − 

 
v    

  

1,2,3, , , 1, 2, 2, ,0 ,
2 2 2 2n
n n n n = − − − 

 
v    

and hence 
2

2 22
12

4

n

i i

ni
=

= −∑v . It is not difficult to see that each iv  has the same 

components within different location, and so each 2
iv  has the same sum as the 

form of ( )( ) 2
2 1 2 3

12i

n n n n+ + −
=v . Therefore ( )

( )2

1

2

12n

n n
M C

+
= . In addi-

tion, by the symmetry, 

( )
( ) ( )2

2

1
2

1 1 1 22 2 2 22 1 2 1 2 1
6 2 12

n

i i
i

n n n nn n n
i i+

=

      + + +       −      ⋅ = − = − − − =
   
   
   

∑v v  

which gives ( ) ( )22

2

2
12n

n n
M C

−
= . 

Theorem 5. For an odd integer 3n ≥ , let nG C≅ . Then  

( )
( )2 2

1

1

12n

n n
M C

−
=  and ( ) ( )( )( )

2

1 2 3
12n

n n n n
M C

− − +
= . 

Proof. With a similar procedure as in the proof of Theorem 4, we get 

1
1 1 10,1,2,3, , , 1, 2, ,1 ,

2 2 2
n n n− − − = − − 

 
v  

 

2
1 1 11,0,1,2, , 1, , 1, , 2 ,

2 2 2
n n n− − − = − − 

 
v  

 

3
1 1 12,1,0,1, , 2, 1, , ,3 ,

2 2 2
n n n− − − = − − 

 
v  

 

  
1 1 11,2,3, , , 1, 2, ,0

2 2 2n
n n n− − − = − − 

 
v  

 
which implies 

( )1
2

2
2 2

1

1
2 ,

12

n

i
i

n n
i

−

=

−
= =∑v  

and so ( )
( )2 2

1

1

12n

n n
M C

−
= . Also, by the symmetry, 
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( ) ( )

( )

( )( )( )

1
2

2

1
2

2

1
2 1

4
1 1 1 1 11 2 1 1 12 2 2 2 22 1 2 1

6 2 4

1 2 3
12

n

i i
i

n
i i

n n n n n
n

n n n

−

+
=

−
⋅ = − +

 − − −   − −     + + +        −       = − − − +
   
   
   

− − +
=

∑v v

 

which gives the exact value of ( )2 nM C  as depicted in the statement of theo-
rem.  

Now we will take into account the complete bipartite graphs to determine the 
locating indices. 

Theorem 6. Let ,n mG K≅ , where 1 n m≤ ≤ . Then  
( ) ( ) ( )2 2

1 , 4 4 2n mM K n m n m nm= + − + +  and ( ) ( )2 , 2 2n mM K nm n m= + − . 
Proof. For all 1 i n≤ ≤  and 1 j m≤ ≤ , by labeling the adjacent vertices iv  

and n jv +  of ,n mK , the locating vectors iv  of iv  are given by: 
1 2

1 2

3 1

3

1

0, 2, , 2,1,1, ,1 , 2,0, 2, , 2,1,1, ,1 ,

2, 2,0, 2, , 2,1,1, ,1 , , 2, , 2,0,1,1, ,1 ,

1, ,1,0, 2

n m n m

n m n m

n

n

n

− −

− −

+

   
= =      
   
   

= =      
   

=

v v

v v

v

   

   



   

    



1 2

2

1

, 2, , 2 , 1, ,1, 2,0, 2, , 2 , ,

1, ,1, 2, , 2,0 .

m n m

n

n m

n m

− −

+

−

+

   
=      

   
 

=   
 

v

v

  

 

   

 

 

In here, for any 1,2, ,i n= 
, we have ( )2 4 1i n m= − +v  and for any 

1, 2, ,i n n n m= + + +
, we get ( )2 4 1i m n= − +v . Therefore 

( ) ( )( ) ( )( )
( ) ( )

1 ,

2 2

4 1 4 1

4 4 2 .

n mM K n n m m m n

n m n m nm

= − + + − +

= + − + +



 

On the other hand, for any two consecutive locating vertices 1,i i+v v  in ,n mK , 
since ( )1 2 2i i n m+⋅ = + −v v , we obtain ( ) ( )2 , 2 2n mM K nm n m= + − . 

Since the following consequences of Theorem 6 are very special cases and 
clear, we will omit their proofs. 

Corollary 7. Let ,n nG K≅ , where 1n ≥ . Then ( ) ( )1 , 2 5 4n nM K n n= −  and 
( ) ( )2

2 , 2 2 2n nM K n n= − . 
Corollary 8. Let 1,mG K≅ . Then ( ) ( )1 1, 2 2 1mM K m m= −  and  
( ) ( )2 1, 2 1mM K m m= − . 

The case for wheel graphs will be investigated in the following result. 
Theorem 9. Let us consider G as the wheel graph nW  ( 4n ≥ ) with 1n +  

vertices. Then we have ( ) ( )1 4 2nM W n n= −  and ( ) ( )2 6 15nM W n n= − . 
Proof. With a similar approximation as in the previous results, by labeling the 
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vertices of ( )V G  in the anticlockwise direction as 1 2 1, , , ,n nv v v v +  such that 

1nv +  is the center of the wheel, we obtain 
3 3

1 2

2 3

3

1

0,1, 2, 2, , 2,1,1 , 1,0,1,2,2, , 2,1 ,

2,1,0,1,2, , 2,1 , , 1, 2, 2, , 2,1,0,1 ,

1,1, ,1,0 .

n n

n n

n

n

n

− −

− −

+

   
= =      
   
   

= =      
   
 

=   
 

v v

v v

v

 

 



 

  



 

Now for any locating vector iv  corresponding to a vertex iv  { }( )1,2, ,i n∈  , 
we have 2 4 9i n= +v  and 2

1n n+ =v . Hence ( ) ( )1 4 2nM W n n= − . 
For ( )2 nM W , by labeling the vertices as above, we have 

1 2
3 3

3 4
2 1

5
3

, , 2, 2, , 2,1, , , , , 2, 2, , 2,1 ,

2, , , , 2, , 2,1 , 2, 2, , , , 2, , 2,1 ,

2, 2, 2, , , , 2, , 2,1 , , 1, 2, 2, , 2, ,

n n

n n

n
n n

− −

− −

−

   
= =   
   
   

= =   
   
 

= = 
 

v v

v v

v v

 

 

 

 

 

  

0 1 1 1 0 1

1 0 1 1 0 1

1 0 1 1

1

, ,

1,1, ,1,0 .n
n

+

 
 
 

 
=  
 

v




0 1
 

Bearing in mind the permutation of components , ,1 0 1  in each vector iv , 
where 1,2, ,i n= 

, it is easy to see that any two adjacent vertices iv  and jv  
{ }( ), 1, 2, ,i j n∈   satisfy 4 11i j n⋅ = −v v  and 1 2 4i i n+⋅ = −v v  for  

1,2, ,i n= 
. Hence ( ) ( )2 6 15nM W n n= − . 

The result for determining of locating indices on path graphs can be given as 
in the following. 

Theorem 10. Let nG P≅  ( )3n ≥ . Then 

( ) ( )( )( )1

1
1

1 2 2 1
,

3

n

n
j

n j n j n j
M P

−

=

− − + − +
= ∑  

and 

( ) ( )( )( )1

2
1

1 1
2 .

3

n

n
j

n j n j n j
M P

−

=

− − + − −
= ∑  

Proof. Assume that G is the graph nP  ( 3n ≥ ). By labeling the vertices from 
left to right as 1 2, , , nv v v  according to the locating function, the correspond-
ing vector for each vertex ( )iv V G∈  ( 1, ,i n= 

) will be the form of 

( ) ( )
( ) ( )

1 2

1

0,1, 2,3, , 1 , 1,0,1, 2, , 2 , ,

2, 1, ,0,1 , 1, 2, 3, ,0 .n n

n n

n n n n n−

= − = −

= − − = − − −

v v

v v

  

 

 

By applying the symmetry on components between the vector pairs 1, nv v  
and 2 1, ,n−v v   and so on, we can see that 
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( ) ( )( )( )1 1
2

1
1 1 1

1 2 2 1
2 .

3

n jn n

n
j i j

n j n j n j
M P i

−− −

= = =

− − + − +
= =∑∑ ∑  

For ( )2 nM P , we see that 

( ) ( ) ( )( ) ( )
1

1 2
1

0 1 1 0 1 2 1 ,
n

i
n n i i

−

=

⋅ = ⋅ + ⋅ + + − − = −∑v v   

( ) ( ) ( )( ) ( )
1

2 3
1

1 2 0 1 2 3 1 ,
n

i
n n i i

−

=

⋅ = ⋅ + ⋅ + + − − = −∑v v   

( )
1

3 4
1

1 ,
n

i
i i

−

=

⋅ = −∑v v  

  

However, by the symmetry between the components of the vectors as men-
tioned above, we get 

( ) ( )
1 1

2
2

1 1 1 1 1
2 1 2

n j n j n jn n

n
j i j i i

M P i i i i
− − −− −

= = = = =

 
= − = − 

 
∑∑ ∑ ∑ ∑  

which can be rewritten as in the form 

( ) ( )( )( ) ( )( )

( )( )( )

1

2
1

1

1

1 2 2 1 1
2

6 2

1 1
2 .

3

n

n
j

n

j

n j n j n j n j n j
M P

n j n j n j

−

=

−

=

− − + − + − − + 
= − 

 
− − + − −

=

∑

∑



 

This complete the proof. 
It is known that from the elementary textbooks the join 1 2G G G= +  of 

graphs 1G  and 2G  with disjoint vertex sets 1V  and 2V  and edge sets 1E  
and 2E  is the graph union 1 2G G  together with all the edges joining 1V  and 

2V . In the following theorem we find first and second locating indices for the 
join graph G. 

Theorem 11. Let 1 2G G G≅ +  such that 1G  and 2G  are both connected 
graphs with diameter 2 and G is a 3C  or 5C -free graph. Assume that 1G  has 

1n  vertices and 1m  edges while 2G  has 2n  vertices and 2m  edges. Then 

( ) ( ) ( )2 2
1 1 2 1 2 1 2 1 22 4 6 ,M G n n n n n n m m= + + − − − +  

and 

( ) ( ) ( ) ( )2 1 1 2 2 1 2 1 2 1 22 4 2 2 .M G m n m n m m n n n n= + − + + + −  

Proof. Assume that G satisfies the conditions in the statement of theorem. Let 
us label the vertices of the graph G as 

1 1 1 1 21 2 1 2, , , , , , , ,n n n n nv v v v v v+ + + 
 

where ( )
11 2 1, , , nv v v V G∈  and ( )

1 1 1 21 2 2, , ,n n n nv v v V G+ + + ∈ . Also let v  be 
the locating vector corresponding to the vertex v such that ( )1v V G∈ : 

( ) ( )deg deg 1 21

0,1, ,1, 2, , 2 ,1, ,1 .
nv n v− −

 
 =
 
 

v
  

    
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Then ( )2
2 14 4 3degn n v= + − −v . 

Similarly, for any vertex ( )2w V G∈ , the locating vector w  corresponding to 
w: 



( )


( )1 2deg deg 1

1, ,1,0,1, ,1, 2, , 2 .
n w n w− −

 
 =
 
 

w   



 

So ( )2
1 24 4 3degn n w= + − −w . Therefore, by the above equalities on 2v  

and 2w , we obtain 

( ) ( ) ( )
( ) ( )

1 1 2 1 1 2 1 2 2

2 2
1 2 1 2 1 2 1 2

4 4 6 4 4 6

2 4 6 .

M G n n n m n n n m

n n n n n n m m

= + − − + + − −

= + + − − − +



 

Now, let us make partition to the set of vertices of G as 

( ){ }1: , ,A u v u v V G= ⋅ ∈
 

( ){ }2: , ,B u v u v V G= ⋅ ∈
 

( ) ( ){ }1 2: , .C u v u V G v V G= ⋅ ∈ ∈
 

Hence ( )2M G  can be written as 
u v A u v B u v C⋅ ∈ ⋅ ∈ ⋅ ∈

⋅ + ⋅ + ⋅∑ ∑ ∑u v u v u v . To 
get 

u v A⋅ ∈
⋅∑ u v  for any two adjacent vertices ( )1,u v V G∈ , let us consider 

( )


( )


21deg deg 1

0,1, ,1, 2, , 2 ,1, ,1
nu n u− −

 
 =
 
 

u   



 

( ) ( )
 

21 deg 1deg 1

1,0, 2, , 2, 1, ,1 ,1, ,1 .
nn uu − −−

 
 =
 
 

v   



 
We then have 

( )( ) ( )( )1 2 2 12 deg 1 2 deg 1 2 4u n u n n n⋅ = − + − − + = + −u v  

which implies ( )1 2 12 4u v A m n n
⋅ ∈

⋅ = + −∑ u v . With a similar calculation, we get 
( )2 1 22 4u v B m n n

⋅ ∈
⋅ = + −∑ u v . 

Next, we need to calculate 
u v C⋅ ∈

⋅∑ u v . To do that let us take ( )1u V G∈  and 
( )2v V G∈ , and then labeling as 

( )


( )


21deg deg 1

0,1, ,1, 2, , 2 ,1, ,1
nu n u− −

 
 =
 
 

u   



 

( )


( )


( )


( )1 2deg 1 deg 1 deg deg 1

1, ,1, 1, ,1 ,0,1, ,1, 2, , 2 .
u n u v n v+ − − − −

 
 =
 
 

v    



 
Hence we get 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

1 2

1 2

deg 2 deg 1 deg 2 deg 1

2 4 deg deg

u n u v n v

n n u v

⋅ = + − − + + − −

= + − − −

u v
 

and so ( )( )1 2 1 2 2 1 1 22 4 2 2u v C n n n n n m n m
⋅ ∈

⋅ = + − − −∑ u v . 
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After all above calculations, we finally obtain 

( ) ( ) ( )
( )( )

( ) ( ) ( )

2 1 2 1 2 1 2

1 2 1 2 2 1 1 2

1 1 2 2 1 2 1 2 1 2

2 4 2 4

2 4 2 2

2 4 2 2 .

M G m n n m n n

n n n n n m n m

m n m n m m n n n n

= + − + + −

+ + − − −

= + − + + + −



 

Hence the result. 

3. Locating Indices of Firefly Graphs 

We recall that a firefly graph , , 2 2 1s t n s tF − − −  ( 0, 0s t≥ ≥  and 2 2 1 0n s t− − − ≥ ) 
is a graph of order n that consists of s triangles, t pendant paths of length 2 and 

2 2 1n s t− − −  pendent edges that are sharing a common vertex (cf. [20]). Let 

n  be the set of all firefly graphs , , 2 2 1s t n s tF − − − . Note that n  contains the stars 
( )0,0, 1n nS F −≅ , stretched stars ( )0, , 2 1t n tF − −≅ , friendship graphs 1,0,0

2
nF −

 
≅  
 

 and 
butterfly graphs ( ),0, 2 1s n sF − −≅ . 

In the next theorem we present the first and second locating indices for the 
firefly graph. In our calculations, for simplicity, we denote 2 2 1n s t− − −  by a 
single letter l. 

Theorem 12. Let , ,s t lG F≅  ( 0, 0s t≥ ≥  and 0l ≥ ) be a firefly graph of or-
der n. Then 

( ) 2 2 2
1 4 16 26 2 16 52 10 38 28 ,M G l ls lt l s st s t t= + + − + + − + −  

and 

( ) 2 2 2
2 2 16 13 2 24 52 20 22 17 .M G l ls lt l s st s t t= + + − + + − + −  

Proof. Let , ,s t lG F≅  ( 0, 0s t≥ ≥  and 0l ≥ ) is a firefly graph of order n. Let 
us label the vertices with clockwise direction as 

1 2 2 1 2 2 2 3 2 1 2 2

2 3 2 1 2 2 2 3 2 2 1

, , , , , , , , ,
, , , , , , ,

s s s s l s l

s l s l t s l t s l t s t l

v v v v v v v
v v v v v

+ + + + + + +

+ + + + + + + + + + + + + +

 

 

 

where 1v  is the center of the firefly graph and 

2 3 2 1
2

, , , : vertices of triangles,s
s

v v v +




 
2 2 2 3 2 1, , , : vertices of pendent edges,s s s l

l

v v v+ + + +




 
2 2 2 3 2 1, , , : vertices of pendent path of length 1,s l s l s l t

t

v v v+ + + + + + +




 
2 2 2 3 2 2 1, , , : vertices of pendent path of length 2.s l t s l t s t l

t

v v v+ + + + + + + + +




 
Now we calculate the corresponding vectors iv  for each vertex ( )iv V G∈ , 

where 1,2, , 2 2 1i s t l= + + + , as in the following: 

1
2

0,1,1, ,1,1,1, ,1,1,1, ,1, 2, 2, , 2 ,
s l t t

 
=  
 

v
   

   

 

2
2 2

1,0,1, 2, 2, , 2, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,
s l t t−

 
=  
 

v
   

   
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3
2 2

1,1,0, 2, 2, , 2, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,
s l t t−

 
=  
 

v
   

   

 

4
2 4

1, 2, 2,0,1, 2, 2, , 2, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,
s l t t−

 
=  
 

v
   

   

 

5
2 4

1, 2, 2,1,0, 2,2, , 2, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,
s l t t−

 
=  
 

v
   

   

 
  

2 1
2 2

1, 2, 2, , 2,1,0, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,s
s l t t

+
−

 
=  
 

v
   

   

 

2 2
2 1

1, 2, 2, , 2,0, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,s
s l t t

+
−

 
=  
 

v
   

   

 

2 3
2 2

1, 2, 2, , 2, 2,0, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,s
s l t t

+
−

 
=  
 

v
   

   

 

  

2 1
2 1

1, 2, 2, , 2, 2, 2, , 2,0, 2, 2, , 2,3,3, ,3s l
s l t t

+ +
−

 
=  
 

   

   v  

2 2
2 1 1

1, 2, 2, , 2, 2, 2, , 2,0, 2, 2, , 2,1,3,3, ,3s l
s l t t

+ +
− −

 
=  
 

   

   v  

  

2 1
2 1 1

1, 2, 2, , 2, 2, 2, , 2, 2, 2, , 2,0,3,3, ,3,1 ,s l t
s l t t

+ + +
− −

 
=  
 

   

   v  

2 2
2 1 1

2,3,3, ,3,3,3, ,3,1,3,3, ,3,0, 4, 4, , 4 ,s l t
s l t t

+ + +
− −

 
=  
 

   

   v  

2 3
2 2 2

2,3,3, ,3,3,3, ,3,3,1,3,3, ,3,0, 4, 4, , 4 ,s l t
s l t t

+ + +
− −

 
=  
 

   

   v  

  

2 2 1
2 1 1

2,3,3, ,3,3,3, ,3,3,3, ,3,1, 4, 4, , 4,0 .s l t
s l t t

+ + +
− −

 
=  
 

   

   v  

Suppose that ( ), , ,A B C D V G⊂  such that 

{ } { }
{ } { }

2 3 2 1 2 2 2 3 2 1

2 2 2 3 2 1 2 2 2 3 2 2 1

, , , , , , , ,

, , , , , , , .
s s l s l s l t

s s s l s l t s l t s t l

A v v v C v v v

B v v v D v v v
+ + + + + + + +

+ + + + + + + + + + + + +

= =

= =

 

 

 

Therefore we can write 

( ) 2 2 2 2
1 .

v A v B v C v D
M G

∈ ∈ ∈ ∈

= + + +∑ ∑ ∑ ∑v v v v  

For the calculation of 2
v A∈∑ v , we have the cases 2

1 2 4 2 5s l t t s l t= + + + = + +v  
and 
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( )2 2 4 2 2 4 4 9 4 8 13 6,i s l t t l s t= + − + + + = + + −v  

where 2,3, , 2 1i s= +
. Hence 

( )2

2

2

2 5 2 4 8 13 6

2 5 8 16 26 12

10 5 8 26 16 .

v A
s l t s l s t

s l t sl s st s
l s t ls st s

∈

= + + + + + −

= + + + + + −

= − + + + +

∑v

 

On the other hand, for the calculation of 2
v B∈∑ v , we have 

( ) ( )2 1 4 2 4 1 4 9 4 8 13 3,i s l t t l s t= + + − + + = + + −v  

where for 2 1,2 2, , 2 1i s s s l= + + + + . Thus 

( )2 24 8 13 3 4 8 13 3 .
v B

l l s t l ls lt l
∈

= + + − = + + −∑v  

Thirdly to calculate 2
v C∈∑ v , we have 

( ) ( ) ( )2 2 4 2 4 4 1 9 1 4 8 13 11,i s l t t l s t= + + + − + − = + + −v  

where 2 2,1,2 3, , 2 1i s l s l s l t= + + + + + + + , and so 

( )2 24 8 13 11 4 8 13 11 .
v C

t l s t tl ts t t
∈

= + + − = + + −∑v  

Finally, for the case of 2
v D∈∑ v , we get 

( ) ( ) ( )2 3 9 2 9 9 1 16 1 9 18 25 22,i s l t t l s t= + + + − + − = + + −v  

where 2 2 2 3 2 2 1, , ,s l t s l t s t li v v v+ + + + + + + + +=  . This gives 

( )2 29 18 25 22 9 18 25 22 .
v D

t l s t tl ts t t
∈

= + + − = + + −∑v  

By collecting all above calculations, we obtain 

( ) 2 2 2 2
1

2 2

2 2

2 2 2

10 5 8 26 16 4 8 13 3

4 8 13 11 9 18 25 22

4 16 26 2 16 52 10 38 28 ,

v A v B v C v D
M G

l s t ls st s l ls lt l
tl ts t t tl ts t t

l ls lt l s st s t t

∈ ∈ ∈ ∈

= + + +

= − + + + + + + + −

+ + + − + + + −

= + + − + + − + −

∑ ∑ ∑ ∑v v v v

 

as required. 
Before starting to calculate the index ( ) ( )2 i j i jv u E GM G

∈
= ⋅∑ v u , we should 

remind that for any two adjacent vertices u and v will be denoted by u v≈ . Now, 
let us again consider the same subsets A, B, C and D of ( )V G . Therefore we 
firstly have 

( )( ) ( )1

2

2 1 2 2 2 3 2 2 4 5 3

4 8 10 6 .
i

i
v A

s s l t t s l s t

sl s st s
∈

⋅ = + − + + + = + + −

= + + −

∑ v v
 

( )( ) ( )1

2

2 2 1 3 2 4 5 2

2 4 5 2 .
i

i
v B

l s l t t l l s t

l sl lt l
∈

⋅ = + − + + = + + −

= + + −

∑ v v
 

( )( ) ( )1

2

1 2 2 1 2 2 4 4 1

2 4 4 .
i

i
v C

t s l t t t l s t

tl ts t t
∈

⋅ = + + + − + = + + −

= + + −

∑ v v
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Secondly, 

{ }
( )( ) ( )

1
1

1

2

2 1 4 2 2 9 2 4 8 13 7

8 16 26 14 .

i
i i

i i
v A v

v v

s s l t t s l s t

sl s st s
+

+
∈ −
≈

⋅ = + − + + + = + + −

= + + −

∑ v v
 

Thirdly, 

( ) ( )( )

( )

,

2

2 6 2 1 12 1

6 12 18 16 6 12 18 16 .

i i t
i i t

i i t
v C v D

v v

t s l t t

t l s t tl ts t t

+
+

+
∈ ∈

≈

⋅ = + + + − + −

= + + − = + + −

∑ v v
 

Again, by collecting all above calculations, we obtain 

( )
{ }1

1

2 1 1 1 1
,

2 2 2

2 2

2 2

4 8 10 6 2 4 5 2 2 4 4

8 16 26 14 6 12 18 16

2 16 13 2 24 52 20

i i tii i i
i i ti i

i i i i i i i t
u C v Dv A vv A v B v C

v vv v

M G

sl s st s l sl lt l tl ts t t
sl s st s tl ts t t

l ls lt l s st s

+
++

+ +
∈ ∈∈ −∈ ∈ ∈

≈≈

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= + + − + + + − + + + −

+ + + − + + + −

= + + − + + − +

∑ ∑ ∑ ∑ ∑v v v v v v v v v v

222 17 .t t−

 

These all above processes complete the proof. 
Corollary 13. 1) For any friendship graph of order n, 

( ) ( )2 2
1 24 13 9 and 6 22 16.M G n n M G n n= − + = − +   

2) For any butterfly graph of order n, 

( ) ( )2 2
1 24 10 6 6 and 8 24 6 2 4.M G n n s M G ns s n n= − − + = − − + +   

4. Conclusion 

In this paper, two new topological indices based on Zagreb indices are proposed. 
The exact values of these new topological indices are calculated for some stan-
dard graphs and for the firefly graphs. These new indices can be used to investi-
gate the chemical properties for some chemical compound such as drugs, bridge 
molecular graph etc. For the future work, instead of defining these new topolog-
ical indices based on the degrees of the vertices, we can redefine them based on 
the degrees of the edges by defining them on the line graph of any graph. Similar 
calculations can be computed to indicate different properties of the graph. 
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Abstract 
In this paper, we study the functions with values in (β, p)-Banach spaces 
which can be approximated by a quadratic mapping with a given error. 
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1. Introduction 

The stability problem of functional equations originated from a question of 
Ulam [1] in 1940 concerning the stability of group homomorphisms. 

Give a group ( )1,G ∗  and a metric group ( )2 , ,G d⋅  with the metric ( ),d ⋅ ⋅ . 
Given 0ε > , does there exist a 0δ >  such that if 1 2:f G G→  satisfies 

( ) ( ) ( )( ),d f x y f x f y δ∗ ⋅ <  for all 1,x y G∈ , then there is a homomorphism 

1 2:g G G→  with ( ) ( )( ),d f x g x ε<  for all 1x G∈ ? 
Hyers [2] gave the first affirmative partial answer to the question of Ulam for 

Banach spaces. Hyers’s Theorem was generalized by Aoki [3] for additive map-
pings and by Rassias [4] for linear mappings by considering an unbounded 
Cauchy difference. The paper of Th. M. Rassias has provided a lot of influence in 
the development of what we call generalized Hyers-Ulam-Rassias stability of 
functional equations. Beginning around 1980, the stability problems of several 
functional equations and approximate homomorphisms have been extensively 
investigated by a number of authors and there are many interesting results con-
cerning this problem (see [5]-[18]). 

The functional equation 

( ) ( ) ( ) ( )2 2f x y f x y f x f y+ + − = +  

is called the quadratic functional equation. Every solution of the quadratic func-
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tional equation is said to be a quadratic mapping. The Hyers-Ulam stability for 
quadratic functional equation was first proved by Skof [5] for mappings acting 
between a normed space and a Banach space. P. W. Cholewa [6] showed that 
Skof’s Theorem is also valid if the normed space is replaced with an abelian 
group. 

Now we recall some basic facts concerning ( ), pβ -Banach spaces. We fixed 
real numbers β  with 0 1β< ≤  and p with 0 1p< ≤ . Let =   or  . Let 
X be linear space over  . A quasi-β-norm ⋅  is a real-valued function on X 
satisfying the following conditions: 

(i) 0,x x X≥ ∀ ∈ ; 0x =  if and only if 0x = ; 
(ii) , ,x x x X Kβλ λ β= ∀ ∈ ∈ ; 
(iii) There is a constant 1K ≥  such that ( ) , ,x y K x y x y X+ ≤ + ∀ ∈ . 
The pair ( ),X ⋅  is called a quasi-β-normed space if ⋅  is a quasi-β-norm 

on X. The smallest possible K is called the module of concavity of ⋅ . A qua-
si-β-Banach space is a complete quasi-β-normed space. 

A quasi-β-norm ⋅  is called a ( ), pβ -norm if p p px y x y+ ≤ +  for all 
x X∈ . In this case, a quasi- ( ), pβ -Banach space is called a ( ), pβ -Banach 
space. For more details and related stability results on ( ), pβ -Banach spaces, 
we refer to [19] [20]. Recently, L. Gǎvruta and P. Gǎvruta [21] studied the ap-
proximation of functions in Banach space. In this paper, we will consider this 
problem in ( ), pβ -Banach spaces and extend previous result for quadratic 
functional equations. 

2. Main Results 

Given 0 1β< ≤  and 0 1p< ≤ . Throughout this paper we always assume that 
X is a linear space, Y is a ( ), pβ -Banach space and :f X Y→  is a mapping. 

Definition 2.1. Let :f X Y→  be a mapping. We say f is Φ-approximable by 
a quadratic map if there exists a quadratic mapping :Q X Y→  such that 

( ) ( ) ( )f x Q x x− ≤ Φ                       (1) 

for all x X∈ . In this case, we say that Q is the quadratic Φ-approximation of f. 
The following result is our main result in this paper. 

Theorem 2.2. Let 1
1: : lim 4 0,
2

n p p
nn

V X x x Xβ
+ →∞

  = Φ → Φ = ∀ ∈  
  

  and 

suppose 1VΦ∈ . Then f is Φ-approximable by a quadratic map if and only if the 
following two condition hold: 

(i) 1 1 1 1 1 1lim 4 2 2 0
2 2 2 2 2 2

p
n p

n n n n n nn
f x y f x y f x f yβ

→∞

       + + − − − =       
       

, 

,x y X∈ ; 

(ii) There exists 1VΨ∈  such that 

( ) ( )1 1 1 1 , .
2 4 2 4

p
p p

n n n n pf x f x x x x Xβ
   − ≤ Ψ + Φ ∈   
   
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In this case, the quadratic Φ-approximation of f is unique and is given by 

( ) 1lim 4
2

n
nn

Q x f x
→∞

 =  
 

 

for all x X∈ . 
Proof. We first assume that f is Φ-approximable by a quadratic map. Then for 

,x y X∈ , we have 

( ) ( ) ( )f x y Q x y x y+ − + ≤ Φ +  

and 

( ) ( ) ( ).f x y Q x y x y− − − ≤ Φ −  

It follows that 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

2 2 2 2

2 2

p

p p

p p

p p p p p p

f x y f x y f x f y

f x y Q x y f x y Q x y

f x Q x f y Q y

x y x y x yβ β

+ + − − −

≤ + − + + − − −

+ − + −

≤ Φ + +Φ − + Φ + Φ

 

for all ,x y X∈ . Hence 

1 1 1 1 1 14 2 2
2 2 2 2 2 2

1 1 1 14 4
2 2 2 2

1 14 2 4 2
2 2

p
n p

n n n n n n

n p p n p p
n n n n

n p p p n p p p
n n

f x y f x y f x f y

x y x y

x y

β

β β

β β β β

       + + − − −       
       

   ≤ Φ + + Φ −   
   

   + ⋅ Φ + ⋅ Φ   
   

 

for all ,x y X∈ . By letting n →∞ , we obtain condition (i) since 1VΦ∈ . Since 
Q is quadratic, we have 

( ) ( ) ( )

( )

1 1 1 1 1 1
2 4 2 2 4 4

1 1
2 4

p p p

n n n n n n

p p
n n p

f x f x f x Q x Q x f x

x xβ

     − ≤ − + −     
     

 ≤ Φ + Φ 
 

 

for all x X∈ . We take 1VΦ = Ψ∈  in the first position, then for all x X∈ , we 
have 

( ) ( )1 1 1 1
2 4 2 4

p
p p

n n n n pf x f x x xβ
   − ≤ Ψ + Φ   
   

 

and the condition (ii) holds. 
Conversely we suppose that (i) and (ii) hold. It follows from condition (ii) that 

for all x X∈ , we have 

( ) ( )1 14 4 .
2 2

p
n n p p p

n nf x f x x xβ   − ≤ Ψ +Φ   
   

           (2) 

Then 14
2

n
nf x  

  
  

 is a Cauchy sequence. Indeed, by using 1
2m x  replace x, 
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we get 

1 1 1 14 4 ,
2 2 2 2

p
n n p p p

n m m n m mf x f x x xβ
+ +

       − ≤ Ψ +Φ       
       

 

and by multipling 4m pβ , for all x X∈ , we have 

( )1 1 1 14 4 4 4 .
2 2 2 2

p
n m pn m m p m p

n m m n m mf x f x x xβ++
+ +

       − ≤ Ψ + Φ       
       

 

Hence, for all x X∈ , 

1 14 4 0
2 2

p
n m m

n m mf x f x+
+

   − →   
   

 

as ,m n →∞ . Since Y is a ( ), pβ -Banach space, the limit  

( ) 1: lim 4
2

n
nn

Q x f x
→∞

 =  
 

 exists. Let n →∞  in relation (2), we get condition (1). 

Now we show that Q satisfies the required conditions. From the hypothesis, 
for all ,x y X∈ , 

1 1 1 1 1 1lim 4 2 2 0.
2 2 2 2 2 2

p
n p

n n n n n nn
f x y f x y f x f yβ

→∞

       + + − − − =       
       

 

Hence for all ,x y X∈ , 

( ) ( ) ( ) ( )2 2 0.Q x y Q x y Q x Q y+ + − − − =  

Therefore 

( ) ( ) ( ) ( )2 2Q x y Q x y Q x Q y+ + − = +  

and Q is a quadratic map. Now we show the uniqueness of Q. We suppose that 
Q satisfies 

( ) ( ) ( )f x Q x x− ≤ Φ  

for all x X∈  and there exists a Q′  satisfying 

( ) ( ) ( ).f x Q x x′− ≤ Φ  

Since Q and Q′  are quadratic mappings, we have 

( )1 1 1 1 1
2 2 2 4 2n n n n nf x Q x f x Q x x       − = − ≤ Φ       

       
 

for all x X∈ . Hence for all ,x y X∈ , 

( ) ( ) ( ) ( )1 14 4
2 2

12 4 .
2

p p
p n n

n n

n p p
n

Q x Q x Q x f x f x Q x

xβ

   ′ ′− ≤ − + −   
   

 ≤ ⋅ Φ  
 

 

Since 1VΦ∈ , for all x X∈ , we have 

( ) ( ) 12 lim 4 0.
2

p n p p
nn

Q x Q x xβ

→∞

 ′− ≤ Φ = 
 
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Hence for all x X∈ , ( ) ( )Q x Q x′= . This completes the proof.           
Corollary 2.3. Let [ ): 0,X Xϕ × → ∞  be a mapping satisfying 

( )1 1 1
0

1 1, 4 ,
2 2

p n p p
n n

n
x y x yβ ϕ

∞

+ +
=

 Φ = < ∞ 
 

∑  

and 

1lim 4 0
2

n p p
nn

xβ

→∞

 Φ = 
 

 

for all ,x y X∈  where ( ) ( )1 ,x x xΦ = Φ . Suppose :f X Y→  a function with 
( )0 0f =  and satisfying 

( ) ( ) ( ) ( ) ( )2 2 ,
p pf x y f x y f x f y x yϕ+ + − − − ≤         (3) 

for all ,x y X∈ . Then there exists a unique quadratic function :Q X Y→  such 
that 

( ) ( ) ( ) ,f x Q x x x X− ≤ Φ ∈  

which is defined 

( ) 1lim 4
2

n
nn

Q x f x
→∞

 =  
 

 

for all x X∈ . 

Proof. Replace x and y by 1
2

x  in (3), we have 

( ) 4 , .
2 2 2

p
px x xf x f ϕ   − ≤   

   
 

Dividing by 4 pβ , we have 

( )1 1 , .
4 2 2 24

p
p

p

x x xf x f β ϕ   − ≤   
   

                (4) 

Replacing x by 1
2

x  in (4), we get 

1 1 , .
4 2 4 4 44

p
p

p

x x x xf f β ϕ     − ≤     
     

                (5) 

Then we have 

( ) ( )

( )

2 2 2 2

2

2

2

1 1 1 1 1 1
4 2 4 24 2 4 2

1 1, ,
2 2 4 44 4

1 , 4 ,
2 2 4 44

1
4

p p p

p p
p p

p p p
p

p
p

x xf x f x f x f f f x

x x x x

x x x x

x

β β

β
β

β

ϕ ϕ

ϕ ϕ

       − = − + −       
       

   ≤ +   
   

    = +        

≤ Φ

 

for all x X∈ . We claim that 
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( ) ( )1 1 1 .
4 2 4

p
p

m m m pf x f x xβ
 − ≤ Φ 
 

               (6) 

holds for all 1m ≥  and x X∈ . When 1m = , this is obviously by (4). Suppose 
(6) holds when m k= , i.e. for all x X∈ , 

( ) ( )1 1 1 .
4 2 4

p
p

k k k pf x f x xβ
 − ≤ Φ 
 

 

Then for 1m k= + , we have 

( )

( )

( )

( ) ( )

1 1

1 1

1

1

1 1
4 2

1 1 1 1
2 24 4 4 2

1 , 4
2 2 24

1
4

p

k k

p p

k k k k

p p p
k p

p
k p

f x f x

x xf x f f f x

x x x

x

β
β

β

ϕ

+ +

+ +

+

+

 −  
 

     ≤ − + −     
     

    ≤ + Φ        

≤ Φ

 

for all x X∈ . By induction, (6) is true for all 1m ≥  and x X∈ . Replacing 

( ),x y  by 1 1,
2 2n nx y 

 
 

 in (3) and multiplying both side by 4n pβ , we have 

1 1 1 1 1 14 2 2
2 2 2 2 2 2

1 14 , .
2 2

p
n p

n n n n n n

n p p
n n

f x y f x y f x f y

x y

β

β ϕ

       + + − − −       
       

 ≤  
 

 

Since 

( )1 1 1
0

1 1, 4 , ,
2 2

p n p p
n n

n
x y x yβ ϕ

∞

+ +
=

 Φ = < ∞ 
 

∑  

we have 

1 1

1 1lim 4 , 0
2 2

n p p
n nn

x yβ ϕ + +→∞

  = 
 

 

for all ,x y X∈ . Hence for all ,x y X∈ , 

1 1 1 1 1 1lim 4 2 2 0.
2 2 2 2 2 2

p
n p

n n n n n nn
f x y f x y f x f yβ

→∞

       + + − − − =       
       

 

It follows from Theorem 2.2 (with 0Ψ =  there) that there exists a unique 
quadratic function Q such that 

( ) ( ) ( )f x Q x x− ≤ Φ  

for all x X∈ .                                                     

Theorem 2.4. Let ( )2
1: : lim 2 0,

4
p n

n pn
V X x x Xβ+ →∞

 = Φ → Φ = ∀ ∈ 
 

 . Sup-

pose 2VΦ∈ . Then f is Φ-approximable by a quadratic map if and only if the 
following two condition 
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(i) ( ) ( ) ( ) ( )1lim 2 2 2 2 2 2 2 2 0
4

pn n n n n n
n pn

f x y f x y f x f yβ→∞
+ + − − − = ; 

(ii) There exists a 2VΨ∈  such that 

( ) ( ) ( ) ( )2 4 2 4
pn n p n n p pf x f x x xβ− ≤ Ψ + Φ  

hold for all ,x y X∈ . In this case, the quadratic Φ-approximation of f is unique 
and is given by 

( ) ( )1lim 2 , .
4

n
nn

Q x f x x X
→∞

= ∈  

Proof. The proof is similar to that of Theorem 2.2 and we omit it.          
Corollary 2.5. Let [ ): 0,X Xϕ × → ∞  be a mapping such that 

( ) ( ) ( )1
1

0
, 4 2 ,2n pp p n n

n
x y x yβ ϕ

∞
− +

=

Φ = < ∞∑  

for all ,x y X∈ . Let ( ) ( )1 ,x x xΦ = Φ . Suppose ( )1lim 2 0
4

p n
n pn

xβ→∞
Φ =  all 

x X∈ . Let :f X Y→  a function with ( )0 0f =  and satisfying 

( ) ( ) ( ) ( ) ( )2 2 ,
p pf x y f x y f x f y x yϕ+ + − − − ≤  

for all ,x y X∈ . Then there exists a unique quadratic function :Q X Y→  such 
that 

( ) ( ) ( )f x Q x x− ≤ Φ  

for all x X∈ . 
Proof. The proof is similar to that of Corollary 2.3 and we omit it.         
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Abstract 
This study presents numerical methods for solving the minimum energies 
that satisfy typical optimal requirements in the transition between two dy-
namic systems where each system is governed by a different kind of weakly 
singular integro-differential equation. The class of weakly singular inte-
gro-differential equations originates from mathematical models in aeroelas-
ticity. The proposed numerical methods are based on earlier reported ap-
proximation schemes for the equations of the first kind and the second kind. 
The main result of this study is the development of numerical techniques for 
determining the stability between two dynamic systems in the minimum 
energy sense. 
 

Keywords 
Optimal Requirement, Transition, Weakly Singular Integro-Differential Equations, 
Stability 

 

1. Introduction 

The minimum energy problem and the associated optimal control problem have 
been investigated for more than half a century. The system constraints can be 
ordinary differential equations, partial differential equations, or functional dif-
ferential equations. This study introduces a numerical method for finding the 
minimum energy to satisfy the general criterion that can be adjusted to minim-
ize various requirements through the selection of appropriate parameters. One 
system constraint is the class of equations of the first kind, which originates 
from an aeroelasticity problem where the mathematical model consists of eight 
integro-differential equations [1]. In the model, the most determinate equation 
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is a scalar weakly singular integro-differential equation of the first kind [2] [3]. 
Furthermore, because of the natural facts of transition between liquid water and 
solid ice [4] or the aviation transition between vertical take-off and horizontal 
flight of an unmanned aerial vehicle [5], we were interested in the energy issue 
in the transition between two basically different (but related) dynamic systems. 
For the setting, the second dynamic system was constructed from the first sys-
tem using finite derivative delay terms that included the boundary points of the 
considered interval. This study followed the structure of other relevant studies [6] 
in assuming that the forcing terms of the system are the control forces. This 
study is organized as follows: Section 2 presents the criteria for the optimal is-
sues. Section 3 presents the approach for determining the minimum energy for 
the transition procedure. Section 4 presents the numerical results attained by 
choosing different parameters for various cost requirements. Section 5 presents 
the summary of this study. 

2. The Model 

Consider the class of weakly singular integro-differential equations of the first 
kind 

( )d
d

=tDx u t
t

                         (1) 

with initial data 

( ) ( ) , 0.φ= − ≤ ≤x s s b s                     (2) 

The difference operator D is defined as 

( ) ( )0
d ,

−
= ∫t tb

Dx g s x s s                      (3) 

where 

( ) ( ).= +tx s x t s                         (4) 

The weighting kernel g is integrable, positive, nondecreasing, and weakly sin-
gular at 0=s . The control force ( )u t  is assumed to be locally integrable for 

0>t . Although a more general kernel g also works, this study focused on the 
Abel-type kernel (i.e., ( ) −= pg s s , where [ ],0∈ −s b  and 0.5=p  from the 
original aeroelastic model). 

The initial condition ( ) , 0φ − ≤ ≤s b s  is in 1,gL , which is a weighted 1L  
space with weight ( )⋅g . Note that the initial value problem in Equations (1)-(2) 
can be written as 

( )0 0
d ,τ τ= + ∫

t
tDx Dx u                      (5) 

provided that the function 

( ) ( )0
d

−
= +∫t b

Dx g s x t s s                     (6) 

is absolutely continuous for 0>t  and the function ( ) ( )φ⋅ ⋅g  belongs to 
[ ]1 ,0−L b . Without a loss of generality, we assume that 1=b . 
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The second system is a class of weakly singular integro-differential equations 
of the second kind 

( ) ( )
1

d d ,
d d

σ
=

− + =∑
l

i t
i

x t Dx u t
t t

                  (7) 

where l is a positive integer and 0 1, 1, ,σ≤ ≤ = i i l . The initial condition is 

( ) ( ) , 1 0.φ= − ≤ ≤x s s s                     (8) 

For the partition between systems (2) and (3), a parameter [ ]0,1λ ∈  is as-
sumed. Therefore, the combined system can be written as 

( ) ( )

( ) ( )
1

d d
d d

d 1
d

λ σ λ

λ ν

=

 − + =

 − =

∑
l

i t
i

t

x t D x u t
t t

D x t
t

                 (9) 

with initial data 

( ) ( ) , 1 0.φ= − ≤ ≤x s s s                     (8) 

Although the proposed methods can be applied to more general cost functions, 
this study primarily considered the typical cost function for comparison: 

( ) ( ) ( )1 2 ,λ λ λΦ = Φ +Φ                    (10) 

and 

( ) ( )( ) ( ) ( )( ) ( )1 12 2 2
1 1 2 30 0

1 d d ,λ α λ α λ η αΦ = − + − +∫ ∫x h x t t t u t t     (11) 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 12 2 2
2 1 2 30 0

1 1 1 d d ,λ α λ α λ η α νΦ = − − + − − +∫ ∫x h x t t t t t  (12) 

where h is a constant of final target state, ( )η t  is a target function, and para-
meters 1 2,α α  and 3α  are nonnegative constants with a total sum of 1. 

3. The Numerical Method 

This procedure is proposed to discretize system (9) and the cost function (10) 
simultaneously to construct two corresponding linear systems with unknowns as 
states and controls. The space mesh points (corresponding to the s variable) are 
discretized as 1 1 01 0τ τ τ τ−− = < < < < =n n , and a new variable ξ  is defined 
as 

( ) ( ), , 1 0, 0.ξ = + − ≤ ≤ >t s x t s s t                (13) 

System (9) can then be reformulated as a first-order hyperbolic equation 

( ) ( ), , , 1 0,ξ ξ∂ ∂
= − ≤ ≤

∂ ∂
t s t s s

t s
                (14) 

with the condition 

( ) ( ) ( )

( ) ( ) ( )

0

1
1

0

1

d , , d ,
d

1 , d .

λ ξ σ λ ξ

λ ξ ν

−

−
=

−

−

∂ − + = ∂


∂ − = ∂

∑ ∫

∫

l p
i

i

p

t s t s s u t
t s

s t s s t
s

           (15) 
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Next, assume that the solution to Equation (8) has the form 

( ) ( ) ( )
0

, ,ξ κ
=

= ∑
n

i i
i

t s t B s                     (16) 

where the basis, ( ) , 0, ,= iB s i n  is given by 

( )
( ) ( ) [ ]

( ) ( ) [ ]

1 1
1

1 1
1

1 , ,

1 , ,

0 otherwise.

τ τ τ
τ τ

τ τ τ
τ τ

+ +
+

− −
−

 − ∈ −=  − ∈ −



i i i
i i

i
i i i

i i

s s

B s s s            (17) 

Namely, ( ) , 0, ,= iB s i n  are piecewise linear functions. After substituting 
the special form of ξ  in Equation (16) into Equations (14)-(15), the governing 
equations for ( ) , 0, ,κ = i t i n  become the following: 

( ) ( ) ( )( )1
d 1 , 1, , ,
d
κ κ κ

δ −= − = i i i
i

t t t i n
t

            (18) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

1
1 0

0

1
0

d d d ,
d d

d1 d ,
d

σλ κ λ κ

λ κ ν

−

−
= =

−

−
=

 + =

 − =


∑ ∑∫

∑∫

i

l np
i i

i i
np

i i
i

t s t B s s u t
t s

s t B s s t
s

        (19) 

where 1 0δ τ τ−= − >i i i , for 1, ,= i n . For time t, discretization contains 
0 1, , ,

mT T T , for 0 10 1= < < < =

mT T T . Define 1+∆ = −k k kT T , for 
0, , 1= −k m . By assuming ( )α κ=k k

i i T , for 0,1, ,i n=  , and 0, ,k m=  , 
and without losing generality, we assume 2l = , 1 0σ = , 2 nσ = , and Equa-
tions (18)-(19) can now be written as 

( ) ( )1
1

1 1 ,α α α α
δ

+
−− = −

∆
k k k k
i i i ik

i

                 (20) 

( ) ( )

( ) ( ) ( )

1 1 1 1 1 1 1
0 1 1 1

11 1 1 1

1 1 1
1

1

,

1 ,

λ λ λ λα α α α λ α α
δ δ δ δ δ

λ α α ν
δ

+ + + + + + +
− −

=− −

+ + +
−

=

 − + − + − =


 − − =


∑

∑

n
k k k k k k ki

n n i i
in n i

n
k k ki
i i

i i

g
u T

g
T

  (21) 

for 1, ,i n=  , 0, , 1k m= − , and 1 di

i

p
ig s s

τ

τ

− −= ∫ . 
Furthermore, we assume a uniform mesh for both space and time, and the mesh 

points are , 0, ,τ = i i n  and , 0, ,= 

kT k m . Specifically, we have τ = −i
i
n

, 

=k kT
m

, for some positive integers n and m. The associated differences are defined  

as 1+∆ = −k k kT T , 0, , 1= −k m , for the time variable and 1δ τ τ−= −i i i , 
1, ,= i n , for the space variable. Thus, we obtain 1∆ =k m  and 1δ =i n , for 
0, , 1= −k m , and 1, ,= i n . Setting =m n  produces the relation  

1δ∆ = =k
i n  for 0, , 1= −k n , and 1, ,= i n , and deriving Equations 

(20)-(21) lead to the following system: 
1

1,α α+
−=k k

i i                          (22) 
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and 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 11 1 1 1 1 1 1
0 1 1 1 1 1

11 1 1 1

1 11 1 1
1 1 1

1

1 1
1

1 11
1

n p pk k k k k k k
n n i i i i k

in n i
n p pk k k

i i i i k
i i

u T u
p

T v
p

λ λ λ λα α α α λ α α τ τ
δ δ δ δ δ

λ α α τ τ ν
δ

− −+ + + + + + +
− − − +

=− −

− −+ + +
− − +

=

  − + − + − ⋅ − − + − = =  −


  − − ⋅ − − + − = ≡  −

∑

∑
 (23) 

for 1, ,= i n , and 0, , 1= −k n . 
After defining corresponding constants 0 1, , , nc c c , and 0 1, , , nd d d , Equa-

tion (23) can be written in the following simplified form: 

( )
( )( )

1 0 0
0 0 0 1 0 1 1 1

1 0 0
0 0 0 1 0 1 1 11

k k
k n k n k

k k
k n k n k

c c c c u

d d d d v

λ α α α α

λ α α α α

+
+ − − +

+
+ − − +

 + + + + + =


− + + + + + =

 

 

, 0, , 1= −k n  (24) 

The connection between the solution ( )x t  and α’s is as follows: Because 
( ) ( ),ξ = +t s x t s , for 1 0− ≤ ≤s , 0>t , and ( ) ( ) ( )

0
,ξ κ

=

= ∑
n

i i
i

t s t B s , it follows 
that ( )x t , for 0>t  can be obtained in the following case: 

( ) ( ) ( ) ( )0 0
0

0κ κ α
=

= = =∑
n

j j j j
l l

l
x T T B T , for 1, ,= j n .      (25) 

For the cost function  
( ) ( )( ) ( ) ( )( ) ( )1 12 2 2

1 1 2 30 0
1 d d ,λ α λ α λ η αΦ = − + − +∫ ∫x h x t t t u t t  

the discretized form is: 

( ) ( ) ( )( )22 2
1 1 0 2 0 3

1 1

1 1 .λ α λα α λα η α
= =

Φ = − + − +∑ ∑
n n

n i i
i

i i
h T u

n n
     (26) 

Taking the first derivatives of ( )1 λΦ  with respect to , 1, ,= iu i n , and set-
ting them to zero yields the following equations: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2 1 2
1 0 2 0 0 0 3 1

1 2 1

1 2
1 ,

n n

n

n aa n aa aa aa n u
n h aa n t aa t aa n
λ α α λ α α α α α

λα λα η η

 ⋅ ⋅ + ⋅ + ⋅ + + ⋅ + ⋅ 
 = ⋅ + ⋅ + + ⋅ 





 

  

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

2 2 1
1 0 2 0 0

0 3

1 2

1 1 2

1

1 1 1 ,

n j j

n
j

j n

n aa n j aa aa

aa n j u

n h aa n j t aa t aa n j

λ α α λ α α α

α α

λα λα η η

+⋅ ⋅ − + + ⋅ + ⋅ +
+ − + ⋅ + ⋅

 = ⋅ − + + ⋅ + + ⋅ − + 





 

  

( ) ( )
( ) ( ) ( )

2 2
1 0 2 0 3

1 2

1 1
1 1 ,

n n
n

n

n aa aa u
n h aa t aa
λ α α λ α α α
λα λα η

⋅ ⋅ + ⋅ ⋅ + ⋅
= ⋅ + ⋅ ⋅

              (27) 

where 

( )
0

11 ,aa
cλ

=  

( ) ( )1

0

2 1 ,
caa aa
c

= − ⋅  

  

( ) ( ) ( ) ( )11 2

0 0 0

1 2 1 ,jcc caa j aa j aa j aa
c c c

−= − − − ⋅ − − − ⋅  
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  

( ) ( ) ( ) ( )11 2

0 0 0

1 2 1 .ncc caa n aa n aa n aa
c c c

−= − − − ⋅ − − − ⋅  

Systems (24) with λ  and (27) can be set up as [ ][ ] [ ]A x b= , where the vector 
[ ]x  consists of the unknowns 0 , 1, ,j j nα = 

, and , 1, ,ku k n=  . The structure 
of matrix [ ]A  is 

( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( ) ( )

0

1 0

1 2 0
2 2 2

2 2 2 1 3
2

2 3
2

2 1
2 2

2 2 1 3
2

2 1 3 2 2

0 0 1 0 0
0 0 1 0

0 0 1
1 2 0 0 ,

0 1 0 0
3

1 2 0
0 0 1 0 0

n n

n n

c
c c

c c c
aa aa n aa n

aa
n aa

aa n aa
n aa

λ
λ λ

λ λ
λ α λ α λ α α α

λ α α
λ α α

λ α λ α α α
λ α α α

− −

×

− 
 − 
 
 

− 
 +
 
 
 + 

+ 
 + 

 

 

       

 

 

  

      

 

 

 

and vector [ ]b  is given by 

( )
( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 0 0
0 1 1 2 1 1
0 0 0
0 2 1 3 2 2
0 0 0
0 3 1 4 3 3

0
0

2 1 1 2 1

2 2 1 2 1

2 1

1 1

1 2 1

1

n n

n n

n n

n n

n n

n n

n

c c c b t
c c c b t
c c c b t

c b t
t aa t aa n t n h aa n

t aa t aa n t n h aa n

t n h aa

α α α
α α α
α α α

αλ
α η η α η α

α η η α η α

α η α

−

−

−

−

−

 − − − − −


− − − − −
− − − − −

− −

   + + − + +   
   + + − + + −   

 + 















2 1

.

n×





 
 
 
 
 
 
 
 
 
 
 

 

For the cost function  
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 12 2 2

2 1 2 30 0
1 1 1 d d ,x h x t t t t tλ α λ α λ η α νΦ = − − + − − +∫ ∫  

the discretized form is: 

( ) ( )( ) ( ) ( )( )22 2
2 1 0 2 0 3

1 1

1 11 1 .
n n

n i i
i

i i
h T

n n
λ α λ α α λ α η α ν

= =

Φ = − − + − − +∑ ∑  (28) 

Taking first derivatives of ( )2 λΦ  with respect to , 1, ,i i nν =  , and setting 
them to zero produces the following equations: 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 1 2
1 0 2 0 0

0 3 1

1 2 1

1 1 1 2

1 1 1 ,

n

n

n

n aa n aa aa

aa n

n h aa n t aa t aa n

λ α α λ α α α

α α ν

λ α λ α η η

− ⋅ ⋅ + − ⋅ + ⋅ +
+ ⋅ + ⋅

 = − ⋅ + − ⋅ + + ⋅ 



  

  

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 1
1 0 2 0 0

0 3

1 2

1 1 1 1 2

1

1 1 1 1 ,

n j j

n
j

j n

n aa n j aa aa

aa n j

n h aa n j t aa t aa n j

λ α α λ α α α

α α ν

λ α λα η η

+− ⋅ ⋅ − + + − ⋅ + ⋅ +
+ − + ⋅ + ⋅

 = − ⋅ − + + ⋅ + + ⋅ − + 




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  

( ) ( )( ) ( )
( ) ( ) ( )

2
0 1 2 3

1 2

1 1 1

1 1 .

n
n

n

n aa aa

aa n h t

λ α α α α ν

λ α α η

− ⋅ ⋅ + ⋅ + ⋅

 = − + ⋅ 
              (29) 

where 

( ) ( ) 0

11 ,
1

aa
cλ

=
−

 

( ) ( )1

0

2 1 ,
caa aa
c

= − ⋅  

  

( ) ( ) ( ) ( )11 2

0 0 0

1 2 1 ,jcc caa j aa j aa j aa
c c c

−= − − − ⋅ − − − ⋅  

  

( ) ( ) ( ) ( )11 2

0 0 0

1 2 1 .ncc caa n aa n aa n aa
c c c

−= − − − ⋅ − − − ⋅  

Systems (24) with 1 λ−  and (29) can be set up as [ ][ ] [ ]A x b= , where the vector 
[ ]x  consists of the unknowns 0 , 1, ,j j nα = 

, and , 1, ,k k nν =  . The structure 
of matrix [ ]A  is 

( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0

1 0

1 2 0

2 2 2
2 2 2 1 3

2
2 3

2
2 1

2 2
2 2 1 3

2
2 1 3

1 0 0 1 0 0
1 1 0 0 1 0

1 1 0 0 1

1 1 1 2 1 0 0

0 1 1 0 0

1 3

1 1 1 2 0

0 0 1 1 0 0

n n

d
d d

d d d

aa aa n aa n

aa

n aa

aa n aa

n aa

λ
λ λ

λ λ

λ α λ α λ α α α

λ α α

λ α α

λ α λ α α α

λ α α α

− −

− − 


− − −


 − − −

 − − − +

 −

 − +


− − +


− +

 

 

       

 

 

  

      

 

 

2 2

,

n n×

















 

and vector [ ]b  is given by 

( )

( )
( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 0 0
0 1 1 2 1 1
0 0 0
0 2 1 3 2 2
0 0 0
0 3 1 4 3 3

0
0

2 1 1 2 1

2 2 1 2 1

2 1

1
1 1

1 2 1

1

n n

n n

n n

n n

n n

n n

n

d d d b t
d d d b t
d d d b t

d b t
t aa t aa n t n h aa n

t aa t aa n t n h aa n

t n h aa

α α α
α α α
α α α

αλ
α η η α η α

α η η α η α

α η α

−

−

−

−

−

 − − − − −

− − − − −

− − − − −

− −−
   + + − + +   

   + + − + + −   

 + 















2 1

.

n×


 
 
 
 
 
 
 
 
 
 
 
 
 
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4. Numerical Examples 

Consider examples involving 0.5p = , [ ]0,1λ ∈ , initial conditions  
( ) 0, 1 0s sφ = − ≤ ≤ , different target final state h, and different target functions 
( ) ,0 1t tη ≤ ≤ . For different criteria, the combinations of constants α’s in the 

cost functions are changed accordingly. 
For the case ( ) ( )1 2 3, , 0,1,0α α α = , the problem is the “tracking problem”. 
Typical cost distribution is as the following two graphs (Figure 1 and Figure 2). 

 
Example 1: 100n = , ( ) ( )1 2 3, , 0.3,0.5,0.2α α α =  

1h =  ( ) 1tη =  mincost 0.5951Φ =  when 0λ =  

1h =  ( )t tη =  mincost 0.3313Φ =  when 0λ =  

0h =  ( ) 1t tη = −  mincost 0.1517Φ =  when 0λ =  

 
Example 2: 100n = , ( ) ( )1 2 3, , 0,0,1α α α =  

1h =  ( ) 1tη =  mincost 0Φ =  when 0λ =  

1h =  ( )t tη =  mincost 0Φ =  when 0λ =  

0h =  ( ) 1t tη = −  mincost 0Φ =  when 0λ =  

 

Example 3: 100n = , ( ) ( )1 2 3, , 1,0,0α α α =  

1h =  ( ) 1tη =  mincost 2.2132 28eΦ = −  when 0λ =  

1h =  ( )t tη =  mincost 2.2132 28eΦ = −  when 0λ =  

0h =  ( ) 1t tη = −  mincost 0Φ =  when 0λ =  

 
Example 4: 100n = , ( ) ( )1 2 3, , 0,1,0α α α =  

1h =  ( ) 1tη =  mincost 5.8587 29eΦ = −  when 0λ =  

1h =  ( )t tη =  mincost 2.5009 29eΦ = −  when 0λ =  

0h =  ( ) 1t tη = −  mincost 2.9966 29eΦ = −  when 0λ =  

 
Example 5: 100n = , ( ) ( )1 2 3, , 0.9,0,0.1α α α =  

1h =  ( ) 1tη =  mincost 0.3424Φ =  when 0λ =  

1h =  ( )t tη =  mincost 0.3424Φ =  when 0λ =  

0h =  ( ) 1t tη = −  mincost 0Φ =  when 0λ =  

 
Example 6: 100n = , ( ) ( )1 2 3, , 0,0.9,0.1α α α =  

1h =  ( ) 1tη =  mincost 0.5712Φ =  when 0λ =  

1h =  ( )t tη =  mincost 0.1785Φ =  when 0.5λ =  

0h =  ( ) 1t tη = −  mincost 0.2321Φ =  when 0λ =  
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Figure 1. Total cost for λ  from 0 to 1. 

 

 
Figure 2. Total cost for λ  from 0 to 1. 

5. Conclusion 

This study presented a numerical method for finding the minimum of the total 
cost when it contains two partial costs from two dynamic systems, and each cost 
contains three weights to adjust for different considerations of energy and dif-
ferent combinations of the measurable parameter λ  between two systems. The 
effectiveness of the proposed method was tested by examples. The numerical re-
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sults indicated that the most stable situations are 0λ = . In other words, dy-
namic system with the first kind integro-differential equation is the most stable 
system in the minimum cost sense. 
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Abstract 
This paper proposes a stochastic dynamics model in which people who are 
endowed with different discount factors chose to buy the capital stock period-
ically with different periodicities and are exposed to randomness at arithmetic 
progression times. We prove that the realization of a stochastic equilibrium may 
render to the people quite unequal benefits. Its proof is based on Erdös Discre-
pancy Problem that an arithmetic progression sum of any sign sequence goes to 
infinity, which is recently solved by Terence Tao [1]. The result in this paper 
implies that in some cases, the sources of inequality come from pure luck. 
 

Keywords 
Erdös Discrepancy Problem, Arithmetic Progression, Inequality, Economic 
Dynamics 

 

1. Introduction 

The existence of inequality of wages, assets, and other incomes in a society has 
been gaining wide attention recently especially since Pikkety [2] (Atkinson et al. 
[3], Gabaix et al. [4], Grossman and Helpman [5], Jones [6], Jones and Kim [7], 
Kasa and Lei [8], Mankiw [9] to name only a few). Many researchers tackled this 
problem by providing models that explain the empirical data, say, the large gap 
between capital income and labor one, or inequality among labor incomes, and 
its extent of that inequality. They employ growth models that endogenously in-
duce the inequality underlining the market mechanism. However, whether the 
inequality is the problem that needs some remedy or should be taken as mere 
phenomena depends on the sources of inequality. If the inequality arises from 
the pure market forces, some people think that interference must be as little as 
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possible and the inequality is not a serious problem. If the inequality is born 
beyond the individual capacity (e.g. inheritance or pure luck), governmental or 
nongovernmental policies are considered to be required in many respects (tax, 
wage control, nationalization of institutions and so on) and the inequality is an 
important problem we must grapple with. 

What this paper concerns is the sources of inequality and especially we focus 
on the possibility that the inequality arises from pure luck. We provide a simple 
stochastic model in which the ex-post realization of the equilibrium stochastic 
process is quite biased among people. 

To complete this purpose, we have to investigate the existence of some regu-
larity within randomness. Intuitively, the realization of randomness from uni-
form distribution offers quite equal benefit among people in the long run, for 
example, in throwing dices or flipping coins, the same numbers realize in almost 
the same times as experiments continue infinitely. However, from a different 
mathematical viewpoint, it is possibly said that the same number arises in a reg-
ular manner so that the same numbers fall upon almost the same people. To 
support this aspect, we employ a monumental mathematical theorem which is 
recently solved. That theorem is the so called Erdös Discrepancy Problem, long 
time being conjecture from around 1932, which is proved by Terence Tao in [1]. 
This theorem roughly states that for any random sequence, the realization of 
which contains almost the same number periodically. 

In this paper, we construct a stochastic equilibrium model in which consum-
ers who have different discount factors buy periodically the capital stock so that 
they are exposed to randomness at arithmetic progression times. Therefore ac-
cording to the Erdös Discrepancy Problem, there are some people who obtain 
high wages arbitrary larger times than low wages or who get low wages arbitrary 
larger times than high wages corresponding to their distinct discount factors.1 

The main feature in this paper is its approach to elucidating the inequality. 
The existent models (such as [1]-[9]) basically attribute the inequality to intrin-
sic character such as productivity, ability and income resource. Since we aim to 
investigate the other resources that give rise to inequality, the model developed 
in this paper is in a class of its own though based on standard economics notions 
such as utility, production and equilibrium, and we draw the distinctive conclu-
sion that the pure randomness possibly causes inequality. The underlying ma-
thematics is the Erdös Discrepancy Problem which is deep and new theorem in 
the number theory. After Tao’s proof [1], some papers clarify the substance of 
this problem (such as Soundararajan [10]). 

The next section describes the stochastic model in which people who have 
different discount factors select capital stock with different periodicity. The third 

 

 

1The claim that the possession of capital becomes biased among people according to heterogeneous 
discount factors is apparently related to the Ramsey’s conjecture, which says that the people who 
have the lowest discount factors own all the capital and is solved by many authors in various settings 
(e.g. Becker [11], Mitra and Sorger [12]). However, in our paper, the discount factor endowed by 
people who have much capital depends on the realization of stochastic processes and it is not neces-
sarily the lowest discount factor’s people who have the large capital. 
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section explains the Erdös Discrepancy Problem and applies it to prove the rea-
lization of stochastic equilibrium. The last section offers concluding remark. 

2. The Model 

Let ( ), , PΩ   be a probability space and define a two point valued stochastic 
process { },ta a a∈  for { }: 1, 2,t∈ =   with 0a a> > . The producers’ be-
havior is described as the following maximization problem. 

max .
t

t t t tL
a L w L−  

where tL  means the aggregate labor and tw  is the wage rate. 
We normalize [ ] 1P tE a = . 
Consumers buy the capital stock and directly obtain the utility from it and 

supply labors that yield disutility. Let tx  be the quantity of capital and denote 
the labor supply by [ ]0,1tl ∈  at t. The quantity of initial capital 1 0x >  decays 
at the depreciation rate of 0 1δ< < . So the stock remains like 2

1 1 1, , ,x x xδ δ   
as the time passes until the period written by 1t t= . Consumers buy the new 
capital and replace the old one at 1 1t t= + . We assume that in the period 

1 1t t= +  no capital is available because buying and replacement are assumed to 
take a time. Next, the new capital is installed after one period at 1 2t + . Then by 
the same manner 2nt

x + , n∈ , decays as 2
2 2 2, , ,

n n nt t tx x xδ δ+ + +   until 1nt t += . 
Consumers buy the new capital and replace the old one at 1 1nt t += + , and the 
new capital is installed after one period at 1 2nt + + . So we need 1 2n nt t+ ≥ +  and 
the period [ ]12,n nt t ++  represents the length of time during which the capital is 
available. Define for n∈ , 

( ) ( )1 2 1 1 1
2 2 2

ˆ : :
0 10 1,

nt n n n n n
t

nn

x t t t t t t t t
x g t

t tt t
− + − − −

+ ≤ ≤  − + + ≤ ≤= = 
= += + 

 

where 0 2 : 1t + = . Consumers’ objective function can be described by 

( )( ) ( ){ }1

1
ˆ .g tt

P t t
t

E u x v lρ δ
∞

−

=

 −  
∑  

with 0 2 1t + =  where u  and v  stand for the utility function and disutility 
one respectively. In what follows, we assume that the utility and disutility func-
tions are linear. 

Assumption 1. 

( ) ( ), , 0.u x x v l lη η= = >  

For convenience, we write down the consumers’ maximization problem by 
setting the length of the remaining period of stock, ( )1 2 :n n nt t k−− + = , namely 
the period between the beginning of newly installed capital, 1 2nt − +  and the 
end of it, nt . Note that the period at which no capital is not yet available is writ-
ten by ( )11 2n

n iit k
=

+ = +∑ . Denote the set of time at which the capital exists by 

( )
1

: \ 2 | 1, 2, .
n

i
i

k n
=

 = + = 
 
∑   
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Denote the set of nonnegative integers by +  (namely { }0 ). Then the 
consumers’ maximization problem is written as follows. 

{ } ( ){ }

( ) ( )
( )

( )
( )

1,2,

1 1 1
1

1 1 2 2
1 1

1 2 1 2
1 1 1 2 1 2

3 31 2
1 2

, ,

2 2
1 1 2 1

1 2 2 2
2 3

2 2 1
3 4 3 2 2

2 2 2 2
2 3

max

1

1

1

i t ti tk x l

k k k
P k

k k k k
k k

k k k k
k k k k k k

k kk k
k k

E x l l l

l x

l l l l

x

ρδ ρ δ ρ δ η ρ ρ

ρ η ρ ρδ ρ δ ρ δ

ρ η ρ ρ ρ η

ρ ρδ ρ δ ρ δ

+= ⊂

+

+ +
+ +

+ + + +
+ + + + + + +

+ + +
+ + +

 + + + + − + + +

− + + + + +

− + + + −

+ + + + +





 







 

( )

( )
( ) ( )

( )
( ) ( )( )

( )
( )

31 2
1 2 1 2 3

1 2 3
1 2 3

1 1 1

1

1 1

11 1

11
1

1

2 2
2 3 2 3

2 2 1
2 2 2

2 2 2
2 1

2
2 1 2 1

2 1
2

1
n

ii n n
n

ii

n
ii n

n n
i i ni i

n
i ni

n
ii

kk k
k k k k k

k k k
k k k

k k k
k

k k
k k k

k k
k

l l

l

x

l l

l

ρ η ρ

ρ η

ρ ρδ ρ δ ρ δ

ρ η ρ

ρ η

= + +

=

= +

+= =

+=
+
=

+ + +
+ + + + + + +

+ + + + +
+ + + + +

+

+ +

+

+ + + + +

+ + +

+

∑
∑

∑
∑ ∑

∑
∑

− + +

−

+ + + + + +

− + +

−



 



+ 


         (1) 

subject to 

,t t t tS w l tθ∆ = ∈  

1 ,t t t t tx S w l tθ+ + ∆ = ∉  

where tS  is the price of stock, which is used for financing the capital or saving, 
and tθ∆  means the increment of quantity of the stock at t. Notice that 1tx +  is 
bought at t. 

We assume that the price of stock has no trend. 
Assumption 2. 

[ ] 1 0P tE S S= >  

for some 1 0S > . 
Thus consumers prefer buying at most capital to saving something at the pe-

riods other than   due to the linearity of utility, presence of discounting ρ  
and no trend of stock prices. They save only when being in   and buy the cap-
ital using all the savings and current wages while being in other than  . Hence 
we can express as 

1 1

1 1 1 1 1 1 1

1 1

3 2 2 2 2 2 2
1 1

,
k k

t t
k k t k k k k k

t t t

w l
x S w l S w l

S
θ

+ +

+ + + + + + +
= =

 
= ∆ + = + 

 
∑ ∑

      
 (2) 

and 

( ) ( )
( )

( )

( ) ( )

11

1 1 1 1
1 1 1 1

1

2 1

2 1 2 2 2
2 1

n
i ni

n n n n
i i i ii i i in

ii

k k
t t

k k k k
t k t

w l
x S w l

S

+=

+ + + +
= = = =

=

+ + +

+ + + + +
= + +

∑

∑ ∑ ∑ ∑
∑

 
= + 

 
∑       (3) 

for 1,2,n =  . Set the price process tS  and tw  by for some 0ε > , 

[ ]and 1.t t P teS w E w= =                     (4) 

Since it needs to hold t ta w=  in equilibrium due to the linearity of produc-
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tion function, putting [ ] 1P tE w =  is required for equilibrium. Next we impose 
parametric assumptions, which lead to the situation where consumers postpone 
working as late as possible but cannot help but work when buying capital in the 
time of the form ( )1 2n

ii k
=

+∑ . 
Let ρ  be the positive solution to ( )2 0ρ ηδ ρ η+ − = , namely,  

( )( )2 4 2ρ ηδ ηδ η= − + + . 

Assumption 3. 

( )
1 and .

2 2 1
ηη ρ ρ

δ ηδ
≤ > >

− +
 

Since 1δ < , we have ( ) ( )1 4 2 1 1η δ δ≤ − < + . Due to ( )2 0η ηδ η η+ − < , 
we have ( )1ρ η η ηδ> > + . Thus the assumptions are consistent. From the lat-
ter part of Assumption 3 and due to ( )20 ρ ηδ ρ η> + − , we obtain 

2

.
1 1
ρ ρη
ρδ ρδ

> >
− −

                       (5) 

Note from (1) and (2) that for 11 1t k≤ ≤ + , the marginal utility of tl  that 
contributes to 

1 3kx +  is ( )1 2 2
1

2 2 2
2 1k k k

k t tS w Sρ ρδ ρ δ ρ δ+
+ + + + + , and mar-

ginal disutility is 1tρ η− . 
We calculate as follows; for 11 1t k≤ ≤ + , 

( )

( )

( )( )

1 2 2
1

1 2 2 1
1

1 2 2
1

1 1
1

2 2 2 1
2

2 2 2
2

2 2 2
2

2 2
2

1

1

1

1 1
1 1

k k k tt
P k t

t

k k k kt
P k t

t

k k k
P k t

k k
P k t

w
E S l

S

w
E S l

S

E S l

E S l

ρ ρδ ρ δ ρ δ ηρ

ρ ρδ ρ δ ρ δ ηρ

ρ ρ ε ρδ ρ δ ρ δ η

ρ ρ ε η ρ ρ η
ρδ ρδ

+ −
+

+
+

+

+

  
+ + + −  

   
  

≤ + + + −  
   
 = + + + − 
   

< − = −   − −   







0.tl


<


 

The second and fourth equalities come from (4) and the last inequality is ob-
tained by (5). Hence consumers select 0tl =  for 11 1t k≤ ≤ + . For  

( ) ( ) 11 12 1 2 1n n
i i ni ik t k k += =
+ + ≤ ≤ + + +∑ ∑ , 1,2,3,n =  , the same arguments 

apply. Hence we conclude that 

0 for .tl t= ∈                         (6) 

Consider 1 2t k= + . We see from (1) and (2) that the marginal utility of 
1 2kl +  

that contributes to 
1 3kx +  is ( )1 2 2

1

2 2 2
2 1k k k

kwρ ρδ ρ δ ρ δ+
+ + + + + , and mar-

ginal disutility is 1 1kρ η+ . We calculate as 

( )( )
( )( )

( )( )

1 2 2 1
1 1

1 2 2
1 1

1 2 2
1

2 12 2
2 2

1 2 2
2 2

1 2 2
2

1

1

1 .

k k k k
P k k

k k k
P k k

k k k
k

E w l

E w l

l

ρ ρδ ρ δ ρ δ ηρ

ρ ρ ρδ ρ δ ρ δ η

ρ ρ ρδ ρ δ ρ δ η

+ +
+ +

+
+ +

+
+

 + + + + − 
 = + + + + − 

= + + + + −







 

Therefore if ( )( )21 kρ ρδ ρδ η+ + + > , it follows that 
1 2 1kl + = , if otherwise, 
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1 2 0kl + =  holds. But if 
1 2 0kl + = , consumers cannot replace the capital so 

1k = ∞ , whose case can be neglected because the period 2k  arising from new 
capital is not selected at the outset. For 2nk + , 2,3,n =  , the same arguments 
apply. Thus we see that 

1 for .tl t= ∉                         (7) 

Hence from (2) and (3) it holds that for 1,2,n =  , 

( ) ( )1 12 1 2
.n n

i ii ik k
x w

= =+ + +∑ ∑
=                      (8) 

Thus we have ( )1 2 1
1n

ii
P k

E x
= + +∑

  =  
 for all n. So we can rewrite the objective 

function in (1) as follows. 

( )
( )

( )
( ) ( )

1 1 1

1 2 2 2

3 3 31 2

1 1 1 1

12 2

2 12 2

12 2 2 2

2 12 2

Objective function

1

1

1

1
n

ii n n n

k k k

k k k k

k k kk k

k k k k

ρδ ρ δ ρ δ ρ η

ρ ρδ ρ δ ρ δ ρ η

ρ ρδ ρ δ ρ δ ρ η

ρ ρδ ρ δ ρ δ ρ η= + + +

+

+ +

++ + +

+ +∑

= + + + + −

+ + + + + −

+ + + + + − +

+ + + + + − +





 

 

 

( )
( ){
( )
( ) ( ) }

1 1 1

1 2 2 2

3 3 32

2 1 1 1

12 2

2 12 2

12 2 2

2 12 2

1

1

1

1 ,
n

ii n n n

k k k

k k k k

k k kk

k k k k

ρδ ρ δ ρ δ ρ η

ρ ρδ ρ δ ρ δ ρ η

ρ ρδ ρ δ ρ δ ρ η

ρ ρδ ρ δ ρ δ ρ η= + + +

+

+ +

++

+ +∑

= + + + + −

+ + + + + −

+ + + + + − +

+ + + + + − +





 

 

 

Define the value function by 

{ }
[ ]

1,2,

: sup objective function .
i ik

V
+= ⊂

=



 

We can write 

( )1 1 1 1

1

1 22 2max 1 .k k k k

k
V Vρδ ρ δ ρ δ ρ η ρ+ + = + + + − +   

From the recursive character seen above, we see that at the optimal, all 
, 1, 2,ik i =   are the same. Write the optimal ik  as *k . Then the maximal val-

ue takes the form 

( ) ( )( ) ( ) ( )

( ) ( )

* ** * *

* *

*

2 2 3 22 1 2

2 1

2

1 1

1
.

1

k kk k k

k k

k

V ρδ ρδ ρδ ρ η ρ ρ ρ

ρδ ρδ ρδ ρ η

ρ

+ ++ +

+

+

 = + + + + − + + + +  

+ + + + −
=

−

 



 

In what follows, we aim to determine the concrete number of *k . Let us put 

( ) ( ) ( )2 1

2

1
: .

1

k k

kv k
ρδ ρδ ρδ ρ η

ρ

+

+

+ + + + −
=

−



 

Then the optimization problem boils down to 
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( )max .
k

V v k=  

We investigate the difference of the above ( )v k  with respect to k. One has 

( ) ( )

( )( ) ( ) ( ) ( ) ( )( )
( )( )

1 2 13 1 2

3 2

1

1 1 1 1
.

1 1

k kk k k

k k

v k v k

ρ ρδ ρ η ρ ρ ρ ρδ ρδ ρδ

ρ ρ

+ ++ + +

+ +

+ −

− + − − − + + + +
=

− −



(9) 

It suffices to know the sign of the numerator in (9) to determine the sign of 
the fraction (9). Note that 

( ) ( )( )
( )( ) ( ){
( ) ( ) ( )( )}
( ) ( ) ( ) ( ) ( )( ){ }

13 1

2 12

2 13 1

sign 1

sign 1 1

1 1

sign 1 1 1 1 .

kk k

kk

kk k

v k v k

ρ ρδ ρ η ρ

ρ ρ ρδ ρδ ρδ

ρ δ η ρ ρ ρ ρδ ρδ ρδ

++ +

++

++ +

+ −

= − + −

− − + + + +

= − + − − − + + + +





 

Put 

( )

( ) ( ) ( ) ( ) ( )( )2 13 1

, 1

: 1 1 1 1 .kk k

k k

ρ δ η ρ ρ ρ ρδ ρδ ρδ ++ +

∆ +

= − + − − − + + + +

 

Then we can write as 

( ) ( )( ) ( )sign 1 sign , 1 .v k v k k k+ − = ∆ +  

Now we further put the following assumption on the parameters. 
Assumption 4. 

3

4

1 and .
11

ρ η δδ ρ
δρ

− +
< >

−−
 

Both inequalities in Assumption 4 are satisfied when δ  is sufficiently small 
because if 0δ = , all inequalities hold consistently with Assumption 3. 

It follows from former part of Assumption 4 that ( )31 1 0δ ρ ρδ− + − < , which 
leads to ( )31 1 0kδ ρ ρδ+− + − <  for 0,1,2,k =  , and further we see that 

( ){ }
( ) ( ){ } ( ) ( )

1 3

1 4 3 4 2 3 1

1 1

1 1 1 1 0

k k

k k k k k k k

δ δ ρ ρδ

δ ρ δ ρ ρ δ ρ δ

+ +

+ + + + + + +

− + −

= − − − = − − − <
 

for 0,1,2,k =  . Thus we find that ( )3 11 k kρ δ+ +−  is strictly decreasing func-
tion in k. So equivalently ( ) ( )3 11 1k kρ δ η ρ+ +− + −  is strictly decreasing func-
tion in k. Together with the fact that ( ) ( ) ( )( )2 11 1 kρ ρ ρδ ρδ ρδ +− + + + +  is 
strictly increasing in k, we see that 

( ), 1 is strictly decreasing in .k k k∆ +                (10) 

Thus we process the following arguments. 
If ( ) ( )1 0 0v v− ≤ , it holds that ( ) ( )1 0v k v k+ − <  for 1, 2,k =  . In this 

case, we have * 0k =  since v is decreasing entirely. It requires ρ η> , which 
induces ( )* 2

1
i k
l

+
= , 1,2,i =  . 
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If ( ) ( )1 0 0v v− >  and ( ) ( )2 1 0v v− ≤ , it holds that ( ) ( )1 0v k v k+ − <  for 
2,3,k =  . In this case, we have * 1k =  if ( )1ρ ρδ η+ >  which leads to 

( )* 2
1

i k
l

+
= , 1,2,i =  . 

If ( ) ( )2 1 0v v− >  and ( ) ( )3 2 0v v− ≤ , it holds that ( ) ( )1 0 0v v− >  and 
( ) ( )1 0v k v k+ − <  for 3,4,k =  . In this case, we have * 2k =  if 

( )( )21ρ ρδ ρδ η+ + >  which implies ( )* 2
1

i k
l

+
= , 1,2,i =  . 

And so forth  . Thus we see that for 1, 2,k =  , 
if ( ) ( )1 0v k v k− − >  and ( ) ( )1 0v k v k+ − ≤ , then we have *k k= .  
if ( ) ( )( )21 kρ ρδ ρδ ρδ η+ + + + >  which leads to * 2

1
k

l
+
= , 1,2,i =  . 

Note that ( ), 1 0k k∆ + <  for large k because ( ) ( )3 11 1k kρ δ η ρ+ +− + −  con-
verges to ( )1η ρ−  and ( ) ( ) ( )( )2 11 1 kρ ρ ρδ ρδ ρδ +− + + + +  converges to 
( ) ( )1 1ρ ρ ρδ− −  as k →∞ , and because ( ) ( ) ( )1 1 1η ρ ρ ρ ρδ− < − −  by 

(5). 
Since ( )1 4 2η δ≤ −  in Assumption 3, we have ( ) ( )2 24 1 2ηδ η ηδ ηδ+ ≤ + + , 

which leads to ( )2 4 1ηδ ηδ η− + + ≤ . Thus it holds that 1
2

ρ ≤  (recall the de-

finition of ρ  before Assumption 3). We can confirm for ( ]0,ρ ρ∈  that 

( ), 1 is strictly increasing as 0,k k ρ∆ + →              (11) 

and that for any k, 

( ), 1 0 holds for small .k k ρ∆ + >                  (12) 

Consider the case of ( ) ( )1ρ ρ η δ δ> ≥ + − . Then 

( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )
( ) ( ){ }

3

2

0,1 1 1 1 1

1 1 1 1 1

1 1 0.

ρ δ η ρ ρ ρ ρδ

ρ ρ ρ δ η ρ ρ ρ ρδ

ρ η δ δ ρ

∆ = − + − − − +

= − + + + − − − +

= − + − − ≤

 

Since ( ), 1 0k k∆ + <  for 1, 2,k =   and ρ η> , we obtain * 0k = . 
Although ( )1,2 0∆ <  at ( ) ( )1ρ η δ δ= + −  (since k rises and (10)), we see 

from (11) and (12) that ( )1,2 0∆ =  for some ( ) ( )1 1ρ η δ δ< + − . Since 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

24 2
1 1 1 1 1 1

2 2
1 1 1 1 1

1, 2 1 1 1 1

1 1 1 1 0,

ρ δ η ρ ρ ρ ρ δ ρ δ

ρ δ η ρ ρ ρ ρ δ

∆ = − + − − − + +

= − + − − − + =
 

we obtain ( )1 11 0η ρ ρ δ− + < . Therefore for ( ) ( ) 11η δ δ ρ ρ+ − > ≥ , we see 
( )0,1 0∆ >  and ( )1,2 0∆ ≤  with ( )1ρ ρδ η+ > . So it follows that * 1k =  for 

( ) ( ) 11η δ δ ρ ρ+ − > ≥ . 
In the same way, we have ( )2,3 0∆ =  for some 2 1ρ ρ< . Then it holds that 

* 2k =  for 1 2ρ ρ ρ> ≥ . We have ( )3,4 0∆ =  for some 3 2ρ ρ< . Then it 
holds that * 3k =  for 2 3ρ ρ ρ> ≥ , and so on. 

If ( )1ρ η ηδ≤ + , which is out of concern due to Assumption 3, it holds 
( )( )1 kρ ρδ ρδ η+ + + <  for all k, which means *k = ∞ , in other words, this 

consumer wants to hold the initial stock forever. 
To summarize we conclude that * 0k =  for ( ) ( ) )1 ,ρ η δ δ ρ∈ + − , * 1k =  
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for ( ) ( ))1, 1ρ ρ η δ δ∈ + − , * 2k =  for [ )2 1,ρ ρ ρ∈ ,  , *k i=  for  
[ )1,i iρ ρ ρ −∈ ,  . Since 

( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

2 13 1

lim , 1

lim 1 1 1 1

1 1 1 0 for 1 ,

k

kk k

k

k k

ρ δ η ρ ρ ρ ρδ ρδ ρδ

η ρ ρ ρ ρδ ρ η ηδ

→∞

++ +

→∞

∆ +

 = − + − − − + + + +  
= − − − − < > +

  

it follows for some ρ  that ( )1ρ ρ η ηδ↓ ≥ +  in order for ( ), 1 0k k∆ + =  to 
hold as k →∞  (note ( )1ρ η ηδ= +  is equivalent to ( )1ρ ρδ η− = ). Hence 
we have 

( ) [ )10
, ,i ii

ρ ρ ρ ρ∞
−=

=


 

where ( ) ( )0 1ρ η δ δ= + −  and 1ρ ρ− = . 
Let [ )2 1: ,i i iϕ ρ ρ+ −= . A consumer who has a discount factor in 2iϕ +  selects 

*k i= , 0,1,2,i =  . For people who belong to 2iϕ + , the supply of labor is one 
when ( )2 , 1, 2,t i n n= + =  , which is the unique opportunity of receiving wag-
es and being exposed by uncertainty, for example, 2ϕ -people who select * 0k =  
supply one labor at 2,4, , 2 ,t n=   , 3ϕ -people who select * 1k =  provide 
one labor at 3,6, ,3 ,t n=   , 4ϕ -people who select * 2k =  supply one labor 
at 4,8, , 4 ,t n=   , and so on. For example, in the case of 12t = , the prime 
factorization is 2 2 3t = × ×  and people who supply one labor are represented 
by { }2,3,4,6,12 , namely, 6th time of 2ϕ -people, 4th time of 3ϕ -people, 3rd time 
of 4ϕ -people, 2nd time of 6ϕ -people and 1st time of 12ϕ -people are those who 
supply one labor. Denote the prime factorization of t by 

( )

1

j
t

j
j

t p
ω

α

=

=∏  

where jp  is a prime number and jα  means its multiplicity. Notation ( )tω  
obeys the convention in the number theory, which means the number of distinct 
primes and approximately follows normal distribution (Erdös and Kac Theo-
rem). We write the following expansion as 

( )( ) ( ) ( ) ( )
( )( )

( )

1 22 2 2
1 1 1 2 2 2

1 2

1 1 1

:1

t
t t t

M t

p p p p p p p p p

x x x

ωαα α
ω ω ω+ + + + + + + + + + + +

= + + + +

   



 

where ( ) ( )( ) ( )( )1 2: 1 1 1 1M t tα α ω= + + + − . Denote the set of label of people 
who supply one labor at t by 

( ) ( ){ }1 2: , , , M tJ t x x x=   

In the case of aforementioned example 12t = , one see that  

( )( )2 2 21 2 2 1 3 1 2 3 2 6 2 3+ + + = + + + + + × . So we get ( ) { }2,3,4,6,12J t =  that 
stands for the set who supply one labor as before. Therefore we have 

( ) ( )# .tL J t M t= =  

Since labor demand is arbitrary from linearity, the supply of labor ( ) ( )# J t M t=  
is always in equilibrium of the labor market. The goods equilibrium condition is 
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denoted by 

( ) ( )1supply demand .t ta M t x M t+=  

Because 1t t ta w x += =  (note 1tx +  is available from 1t +  but bought at t), its 
condition holds. The stock market equilibrium condition is written as 

( )

( )

1supply

demand the total number of labor other than .

t t

t

t

t

w x
M t

S
w

J t
S

+−

= ⋅   

 

Because 1t tw x +=  and the labor other than ( )J t  equals 0 (for each consumer, 
labor supply is zero in  ), the above condition follows. 

3. Realization of Stochastic Capital Process 

This section concerns the realization of stochastic capital process. The aggregate 
capital process in equilibrium is described by 

( )ta M t  

as in the previous section where ( )t ta w=  is the exogenous productivity sto-
chastic process taking value a  or a , and ( )M t  stands for a deterministic one 
endogenously determined in equilibrium. However, each individual consumer po-
tentially face and really encounter at arithmetic progression times the exogenous 
stochastic productivity process (equivalently wages) { }1 2 3, , ,a a a  , which is rea-
lized as ( ), , , , ,a a a a a  , or ( ), , , , ,a a a a a  , or ( ), , , , ,a a a a a  , and so on. 

At this point, we introduce the monumental mathematical theorem, known as 
Erdös Discrepancy Problem, long time being conjecture from around 1932, proved 
by Terence Tao in (2016). It states that for any sign sequence { }: 1,1f → − , 

( )
, 1
sup

n

n d j
f jd

∈ =
∑



 

is infinite. Formally, for any 0C >  and f , there exist n  and d  such that 

( )
1

.
n

j
f jd C

=

≥∑  

Roughly speaking, given infinite sign sequence, say, { }1, 1, 1, 1, 1, 1,− − + − − +  , 
pick up each number skipping 1d −  times (e.g. pick up 1, 1,+ +   skipping 2 
times (avoiding 1, 1− − )), which adds up to sufficiently large for sufficiently large 
length of numbers. This topic generally concerns the problem as to whether there 
exists some regularity within random sequences. Van der Waerden’s theorem 
(1927) asserts that for any f  and k ∈ , there exist a  and r∈  such that 

( ) ( ) ( ) ( )( )2 1f a f a r f a r f a k r= + = + = = + −  

namely, for any sign sequence there exists any long arithmetic progression with 
the same number. Erdös Discrepancy Problem says the similar statements that tak-
ing a homogeneous arithmetic progression, the either sign outnumbers the other 
one by arbitrary large extent. 
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We apply this Erdös Discrepancy Problem to the exogenous { }ta , which is 
equal to { }tw  in equilibrium. In the model in the previous section, consumers 
are exposed to randomness periodically, namely, 2iϕ + -people encounter the 
randomness at ( )2i n+ , n∈  periods for i +∈ . By redefining  

{ }: ,f a a→  and reinterpret ( )2i d+ = , we can say the following theorem. 

Theorem. For arbitrary large number, 0C > , and any realization of { }ta , 
there exists a long period of time, N ∈ , and 2iϕ + -people who face the high 
wages or low wages for periods that outnumber the other ones by difference 

0C > , namely, 

( )

( )

2 -people encounter

# # lucky people case
or
# # unlucky people case

i

a a C

a a C

ϕ +

− ≥


 − ≥

 

for 1,2, ,t N=  . 
Roughly speaking, even under random environment, there may be a fixed mem-

ber in a society who is almost always lucky or unlucky for large period of time. Note 
that in the case of 0d =  that attains the given C, we take periods, say, 

2,4,6, , 2 ,t n=    that 2ϕ -people encounter and reinterpret it as original se-
quence, then we can take subsequence that attains the given C. 

4. Conclusions 

This paper proposes a stochastic dynamics in which people who are endowed 
with different discount factors buy the capital stock periodically and are exposed 
to randomness at arithmetic progression times. We prove that the realization of 
the stochastic equilibrium may render to the people quite unequal benefits. Its 
proof is based on Erdös Discrepancy Problem that an arithmetic progression 
sum of any sign sequence goes to infinity, which is recently solved by Terence 
Tao (2016). There are some people who obtain high wages arbitrary larger times 
than low wages or who get low wages arbitrary larger times than high wages 
corresponding to their distinct discount factors. The result in this paper implies 
that in a certain society, the sources of inequality come from pure luck. 

Finally we note the topics that remain in future research. Inequality arising 
from realization of stochastic processes only identifies the most lucky or the least 
one and does not explain the distribution of various income realization. In addi-
tion, whether people face the fortunate case or not reflects observation of the fi-
nite time and we cannot say anything about what occurs beyond the periods. 
The type of phenomena that is in this paper out of scope may be explained by 
other approach or more generalized mathematical theorem on the number 
theory or stochastic analysis. 
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Abstract 
This paper presents an improved Randomized Circle Detection (RCD) algo-
rithm with the characteristic of circularity to detect randomized circle in im-
ages with complex background, which is not based on the Hough Transform. 
The experimental results denote that this algorithm can locate the circular 
mark of Printed Circuit Board (PCB). 
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1. Introduction 

Detecting circles from a digital image is very important in image processing [1] 
and computer vision [2]. This problem has extensive application value in engi-
neering such as product inspection and assembly, traffic monitoring, robot vi-
sion, face recognition, vectorization of hand-sketched drawing. For example, it 
plays an important role in the production of Printed Circuit Board (PCB) to 
achieve automatic positioning of PCB and to locate the reference point named as 
fiducial mark. Fiducial marks are used to locate the position of all features on 
PCB. In recent years, two main research directions are how to improve the ac-
curacy and reduce the computation performance. 

As the most well-known approach for circle detection, Hough Transform 
(TH) [3] has gained the widespread interest from researchers. Standard Circle 
Hough Transform (CHT) [4] has been shown with possessing robustness in 
dealing with noisy images. Set ( ),x y  be an edge pixel on a circle with center 

How to cite this paper: Liu, J.K. and Fan, 
Q. (2019) An Improved Randomized Circle 
Detection Algorithm Using in Printed Cir-
cuit Board Locating Mark. Applied Ma-
thematics, 10, 848-861. 
https://doi.org/10.4236/am.2019.1010061 
 
Received: September 14, 2019 
Accepted: October 20, 2019 
Published: October 23, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2019.1010061
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2019.1010061
http://creativecommons.org/licenses/by/4.0/


J. K. Liu, Q. Fan 
 

 

DOI: 10.4236/am.2019.1010061 849 Applied Mathematics 
 

coordinates ( ),a b  and radius r, the circle can be represented by 

( ) ( )2 2 2 .x a y b r− + − =                      (1) 

Each edge pixel ( ),x y  in the image can be mapped into a conic surface in 
the three-dimensional ( ), ,a b r -parameter space. Although the technique can 
regularly achieve a relatively high degree of accuracy, there are some influencing 
factors such as huge demand of memory space for the accumulator and high 
computational complexity due to the time-consuming voting procedure. Several 
HT-based methods have been developed to overcome these problems. Rando-
mized Hough Transform (RHT) [5] relative to CHT has faster processing speed 
and smaller storage requirement. RHT uses three noncollinear edges to deal with 
the three parameters ( ), ,a b r  of Equation (1). This method randomly selects 
three edge pixels in the image with equiprobability every time, and the corres-
ponding mapped pixel in the three-dimensional parameter space is collected. 
RHT performs well in high quality image, but low performance in noisy image. 

In place of creating an accumulator array for mapping the extracted edge pix-
els in images to the circle parameters in HT-based method, Randomized Circle 
Detection (RCD) [6] does not use an accumulator for saving the information of 
related parameters in Randomized Sample Consensus (RANSAC) [7] based me-
thod. The main concept is that the algorithm randomly chooses four edge pixels 
from the image first, and then uses a distance criterion to determine whether 
they belong to a possible circle in the image. After finding a possible circle, RCD 
uses an evidence-collecting step to further determine whether the candidate cir-
cle is a real-circle. Since RCD does not need extra accumulator storage, the mem-
ory requirements needed in RCD are only a few variables, and the method has 
some other advantages such as real-time speed and more robust to noise. How-
ever, sampling for RCD randomly happens on all edge pixels of the whole image 
and verification of the hypothetical circles also use all the edge pixels, which both 
occupy a mass of time and obtain uncertainty of results [8]. To solve these prob-
lems, an improved randomized circle detection algorithm in the complex back-
ground image is proposed in the paper, which uses improved RCD algorithm 
and the characteristic of circularity. Firstly, the improved RCD based on connected 
contours is applied to detect possible circles. Then, the characteristic of circularity 
is used to discard some inaccurate possible circles. The algorithm is faster than 
RCD for it samples only on the connected curve [8]. The experimental results 
show that the refined algorithm has good detection performance. 

In this paper, we search circles with an improved RCD algorithm in the com-
plex back ground image, and use the characteristic of circularity to eliminate in-
correct circles. Simulation results show that the proposed algorithm can locate 
circle mark effectively in PCB. The rest of this paper is organized as follows: Sec-
tion 2 discusses the theory about normal Randomized Circle Detection (RCD). 
Section 3 introduces the improved Randomized Circle Detection in detail. Sec-
tion 4 states the experimental results. Finally, some conclusions are given in Sec-
tion 5. 
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2. Randomized Circle Detection (RCD) 

This section describes the algorithm of standard RCD. Store all edge pixels 
( ),i i iv x y=  to the set V. Any three noncollinear pixels ( ), , 1, 2,3i i iv x y i= =  

can exactly determine one circle 123C . By Equation (1), we have 
2 2 2 2 2

123 123 123 123 1232 2 , 1,2,3.i i i ix a y b r a b x y i+ + − − = + =          (2) 

A representation of Equation (2) in terms of matrix form 
2 2

1 1 123 1 1
2 2

2 2 123 2 2
2 2 2 2 2

3 3 123 123 123 3 3

2 2 1
2 2 1
2 2 1

x y a x y
x y b x y
x y r a b x y

 +  
    = +   

    − − +    

            (3) 

Applying Gaussian elimination and Cramer’s rule, the center ( )123 123,a b  can 
be obtained by 

( )( ) ( )( )

2 2 2 2
2 2 1 1 2 1
2 2 2 2
3 3 1 1 3 1

123
2 1 3 1 3 1 2 1

,
2 2

x y x y y y
x y x y y y

a
x x y y x x y y

+ − − −
+ − − −

=
− − − − −

           (4) 

( )( ) ( )( )

2 2 2 2
2 1 2 2 1 1

2 2 2 2
3 1 3 3 1 1

123
2 1 3 1 3 1 2 1

.
2 2

x x x y x y
x x x y x y

b
x x y y x x y y

− + − −
− + − −

=
− − − − −

            (5) 

After obtaining the center ( )123 123,a b , the radius can be calculated by 

( ) ( )2 2
123 123 123 , 1, 2,3.i ir x a y b i= − + − =               (6) 

Let ( )4 4 4,v x y=  be the fourth edge pixel, then the distance between 4v  and 
the boundary of the circle 123C  denoted by 

( ) ( )2 2
4 123 4 123 4 123 123: ,d x a y b r→ = − + − −              (7) 

where z  denotes the absolute value of z. The four edge pixels  
( ), , 1, 2,3, 4i i iv x y i= =  can obtain four circles 123C , 124C , 134C , 234C  with 

respect to four distances 4 123d → , 3 124d → , 2 134d → , 1 234d → . If l ijkd →  is smaller 
than the given threshold dT , these four edge pixels are co-circular and the circle 

ijkC  is a possible circle. If the four distances are all larger than dT , RCD algo-
rithm chooses the other four edge pixels. 

Set a counter 0C =  for this possible circle in order to count how many edge 
pixels lie on the possible circle. For each edge pixel nv  in V, if n ijk dd T→ ≤ , the 
counter C will be incremented by one and nv  should be taken out of V; other-
wise the next edge pixel will be proceed to. Continue above process until all the 
edge pixels in V have been examined. In the evidence-collecting process, the fi-
nal value of C is equal to pn  which is the number of edge pixels on the possible 
circle. If pn  is larger than the given global threshold gT , the possible circle is 
claimed to be true. Otherwise, we discard the false circle and return those pn  
edge pixels back into V. 

In practical application, the following thresholds are used to search circle in 
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image: 
 

fT  
The number of failures that can be tolerated. The running time must be finite, regardless 
of whether the correct results are obtained. 

rT  The ratio threshold of co-circle pixels. It is used to replace the global threshold 

gT  The number of pixels at the edge of circle, 2g rT rT= π , r is the radius of possible circle. 

aT  
The threshold of distance. The distance between any two agent pixels of the possible circle 
should be larger than aT . 

dT  
The distance threshold for co-circle. It means that the fourth selected pixel is closed to the 
possible circle, which is determined by the other three pixels. 

cT  The number of circles that we want to detect in image. 

rLT  The minimal radius that the possible circle should fit. 

rUT  The maximal radius that the possible circle should fit. 

 
The standard RCD algorithm has some advantages such as fewer memory re-

quirements, faster speed and simpler algorithm than CHT or RHT. 

3. The Improved RCD Algorithm 

This section presents the improved algorithm consisting of the following. The 
general idea is to reduce the computational complexity and enhance the accura-
cy by extracting connected contours. It can discard some inaccurate possible cir-
cles by using characteristic of circularity. 

3.1. Noise Suppression 

In order to obtain higher recognition quality, an image preprocessing is used to 
suppress and eliminate noise from image. A Gaussian smoothing is a widely 
used to reduce image noise, which is represented by Gaussian filter [9]. Gaussian 
filter is a windowed filter of linear class with weighted nature, which is calculated 
according to Gaussian distribution. Gaussian filter in the most general function 
form of 

( )
2

221 e ,
2

x

G x σ
σ σ

−
=

π
                      (8) 

in one-dimensional is able to fulfill this criterion optimally, where σ  is the 
standard deviation of the Gaussian curve. In two-dimensions the Gaussian filter 
is defined by 

( )
2 2

22
2

1, e
2

x y

G x y σ
σ σ

+
−

π
=                      (9) 

This filter can be separable by 

( ) ( ) ( ), .G x y G x G yσ σ σ=                    (10) 

In order to remove small details from the image and fill small gaps in lines or 
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curves, the Gaussian filter should be used before other operations. The above 
mentioned Gaussian filter is used in continuous domain. In one discrete digital 
image, a discrete Gaussian low-pass filter should be used. The value of every pix-
el in the image will be replaced by the average of the intensity levels in the 
neighborhood defined by the filter mask. Because the smoothing process leads to 
“un-sharp” transition in intensities, smoothing filters have the undesirable side 
effect, which blur edges of object. In order to keep the balance between elimi-
nating random noise and preserving sharpness of edges, the Gaussian filter with 
mask size 3 3×  

1 1 1
1 1 1 1
9

1 1 1

 
 × 
 
 

                        (11) 

should be used in our experiment. It can be best seen by substituting the coefficient 
of the mask into the characteristic response R [10] with the sum of products as 

9
T

1
,k k

k
R w z W Z

=

= =∑                      (12) 

where W and Z are nine-dimensional vectors formed from the coefficients of a 
3 3×  filter mark and the image intensities are encompassed by the mask respec-
tively. Then we obtain 

9

1

1 .
9 i

i
R z

=

= ∑                          (13) 

Figure 1 shows the results of applying a Gaussian smoothing in digital image. As 
expected from the Gaussian filter with mask size 3 3× , the detail of noise is blurred. 

3.2. Edge Detection 

The purpose of edge detection is to identify points in digital image at which the 
image brightness changes sharply. In the past 30 years, there are many methods 
for edge detection, but most of them can be classified into two categories, the 
Template Matching (TM) and the Differential Gradient (DG) [11]. In either  

 

   
(a)                                   (b) 

Figure 1. Gaussian smoothing. (a) Original image of size 307 × 307 pixels; (b) Result of 
smoothing using Gaussian filter. 
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case, the aim is to find where the intensity gradient magnitude g is large enough 
to be taken as a reliable indicator of the edge. In the DG approach, the gradient 
information is estimated vectorially. There are some well-known edge operators, 
such as Sobel edge operator, Canny edge operator, Robbers edge operator, Pre-
witt edge operator and so on. In practice, Sobel gradient operator is most fre-
quently used according to its simplicity and effectiveness. The local edge magni-
tude may be calculated vectorially using the nonlinear transformation [11] 

2 2 ,x yg g g= +                         (14) 

In order to save computational effort, the approximate formula 

,x yg g g= +                         (15) 

could be used in practice. Figure 2 illustrates the edge segmentation, which are 
obtained from input original image Figure 1(a) and smoothed image Figure 
1(b). It is clear that Figure 2(b) shows fewer noisy in the segmentation. 

3.3. Extracting Contours 

In order to reduce the computation running time and enhance the accuracy, the 
contours are obtained by using software OpenCV. RCD will be executed in the 
connected contour to find possible circles. The computational complexity is re-
duced from all pixels to contours. 

As illustrated in Figure 3(a), an image with all contours from Figure 2(b) is 
generated. Figure 3(b) shows another more complex image with a different fidu-
cial mark. All contours extracted from Figure 3(b) are shown in Figure 3(c). The 
circle is divided into some broken edges. Every connected contour is drawn with 
its own particular color in images. 

3.4. The Improved RCD Algorithm 

As above mentioned, we describe how to determine possible circles according to  
 

  
(a)                                       (b) 

Figure 2. Edge segmentation. (a) Segmentation of Figure 1(a); (b) Segmentation of Fig-
ure 1(b). 
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(a)                                  (b)                                   (c) 

Figure 3. Connected contours. (a) Contours from Figure 2(b); (b) Original image with size 195 × 195 pixels; (c) 
Contours obtained from (b). 

 
the extracted contours. Let V denote the set of all edge contours in the image. The 
procedure randomly picks four pixels from each contour to make a decision 
whether the contour belongs to a possible circle based on the RCD algorithm. If 
the four pixels meet Equation (6) and Equation (7), all pixels from all contours will 
be collected. We continue the above process until the contour is determined as a 
possible circle or the global threshold fT  has been reached. The procedure 
proceeds to next contour and the global Threshold fT  is reset at the beginning. 

Because the proposed algorithm samples only on the connected contours, it 
can overcome the interference between different objects and improve the accu-
racy of detection. The computational complexities are reduced and the execu-
tion-time is saved. 

3.5. The Characteristic of Circularity 

The above technique can detect all possible circles around the true fiducial mark. 
There exists a bias problem, because of noise and nonstandard circular circle. 
The circularity will be calculated to determine the best matching circle. 

Usually the used form features can be grouped into two categories, the con-
tour characteristic and the regional characteristic. The contour characteristic of 
image is mainly aimed at the boundary of image, and the regional characteristic 
of image is related to the whole shape region. The circular degree could be used 
to describe the circle. There are four circular degree measures [12], such as cir-
cularity, boundary energy, density and ratio of area to average distance quadratic 
sum. The characteristic of circularity is easy to be realized and more suitable for 
engineering application. It is needed to explain that the extraction of characteris-
tic of circularity is based on image pre-processing and edge detection. 

The characteristic of circularity is defined by all boundary pixels of the region 
D. An image may be defined as one two-dimensional function ( ),f x y , and the 
amplitude of f at any pair of coordinates ( ),x y  is called the gray level of the 
image at the pixel. Suppose that the image is of size N M×  elements. Set a pair 
of coordinates ( ),k kx y  of any pixel in the image. The barycentric coordinates 
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are defined as 

( )

( )

( )

( )
1 1 1 1

1 1 1 1

, ,
: , : .

, ,

N M N M

i j i j
N M N M

i j i j

i f i j j f i j
x y

f i j f i j

= = = =

= = = =

⋅ ⋅
= =
∑∑ ∑∑

∑∑ ∑∑
            (16) 

The average distance from the regional barycentric to the boundary pixel is in 
the form of 

( ) ( )
1

0

1: , , ,
K

D k k
k

x y x y
K

µ
−

=

= −∑                  (17) 

where ( ) ( ) ( ) ( )2 2
1 1 2 2 2 1 2 1, , :x y x y x x y y− = − + − , and the mean square devia-

tion of distance from the regional barycentric to the boundary pixel is in the 
form of 

( ) ( )
1 2

0

1: , ,
K

D k k D
k

x y x y
K

δ µ
−

=

 = − − ∑               (18) 

can be simplified to 

( ) ( )
1 22 2 2

0

1: .
K

D k k D
k

x x y y
K

δ µ
−

=

 = − + − − ∑              (19) 

The calculation formula for the characteristic of circularity is defined by 

: .D

D

C δ
µ

=                           (20) 

When the regional D tends to be a circle, the characteristic of circularity C is 
monotonically decreasing and tends to be infinitesimal. It’s not affected by re-
gional translation, rotation and variation of scales. It means that we can deter-
mine the position of the circle in the image by the minimum point of characte-
ristics of circularity in local region. 

3.6. Stability, Accuracy and Time Speed 

There are still some shortcomings in the standard RCD. Because the standard 
RCD randomly picks four edge pixels each time. The search process ended when 
it found the true circle or reached the number of failures fT . It means that the 
searching result may be quite different according to the different four starting 
pixels. If the staring pixels are close to the target circle, the circle may be de-
tected rapidly. Sometimes, the start four pixels are too far from the target circle 
and the input image contains too many useful and useless pixels. The RCD algo-
rithm may end without finding the true circle. In order to find possible circle ra-
pidly, these thresholds dT , rT  and aT  should not be too small. Then many 
incorrect circles would be found. 

By suppressing noise and finding of the connected contours, which contains 
at least a certain number of points, it will reduces the calculation time and find 
fewer possible circles. At last, after verifying the circularity, the real circle will be 
selected. So the improved RCD provides the better stability and accuracy than 
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standard RCD. As the image grows larger and more complex, the time will be-
come more longer. But the improved RCD will significantly reduce the time. The 
following experiment will be used to verify these conclusions. 

4. Experimental Results 

In this section, some experimental results are demonstrated to show the execu-
tion-time and accuracy advantages of our improved RCD algorithm, compared 
with standard RCD algorithm. Four original images are used to evaluate the per-
formance of the proposed algorithm. The first three images with the same mark 
are shown in Figures 4(a)-(c), which have different size 131 124× , 262 153×  
and 307 307×  pixels. The last image Figure 4(d) has another different mark. 
The radius of the first mark R is 26.5 pixels and the radius of the second mark R 
is 36.5 pixels. Table 1 describes all parameters used in our experiments. Some  

 

  
(a)                                       (b) 

  
(c)                                   (d) 

Figure 4. Four original images with different size and mark. (a)-(c) Original images with 
the same mark; (d) Original image with another different mark. 

 
Table 1. All thresholds used in experiments. 

 fT  rT  aT  dT  cT  rLT  rUT  ccT  

Pure RCD 100,000 0.6 0.25R 1.5 20 R − 5 R + 5 1 

Improved 
RCD 

Square of the length of contour, which is 
different in searching circle in each chain 

0.6 0.25R 1.5 20 R − 5 R + 5 1 
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additional variables are defined as following: P denotes the center pixel ( ),x y  
of detected circle. R is the pre-input radius and r is the radius of detected circle. 
PN is the number of pixels on the contour of detected circle. C is the circularity 
of detected circle. Avg T (ms) represents the average running time in millise-
cond. ccT  is the threshold of circularity. 

4.1. Locating Mark with Standard RCD Algorithm 

In this part the marks will be detected by using standard RCD algorithm. As 
shown in Figure 5 there are many correct and incorrect circles in images. In 
Figure 5(c) the true mark circle is not included in the detected possible circles. 
There is no way to discard the incorrect circles and find the true mark. Accord-
ing to the threshold cT , there are twenty possible detected circles at most, which 
are drawn in Figure 5. In Tables 2-5 only ten possible circles are described. 

 

    
(a)                                     (b) 

   
(c)                                  (d) 

Figure 5. Locating results using standard RCD algorithm. (a)-(c) The detected results, 
obtained from Figures 4(a)-(c); (d) The result obtained from Figure 4(d). 

 
Table 2. Ten results shown in Figure 5(a). 

P r PN P r PN 

(71.039, 81.479) 25.911 404 (70.902, 80.576) 26.225 369 

(90.787, 30.734) 28.790 133 (75.500, 83.700) 28.452 138 

(70.930, 79.679) 26.190 302 (45.153, 11.418) 27.853 58 

(72.391, 81.334) 25.750 383 (71.071, 80.071) 25.014 320.000 

(71.982, 81.718) 25.382 379 (62.561, 16.912) 23.763 66 

https://doi.org/10.4236/am.2019.1010061


J. K. Liu, Q. Fan 
 

 

DOI: 10.4236/am.2019.1010061 858 Applied Mathematics 
 

Table 3. Ten results shown in Figure 5(b). 

P r PN P r PN 

(189.352, 66.432) 26.473 175 (157.550, 47.532) 26.822 170 

(194.103, 72.685) 24.486 116 (195.472, 52.751) 24.591 166 

(157.036, 36.878) 24.956 151 (223.636, 50.818) 26.623 106 

(201.467, 86.570) 23.407 89 (185.626, 41.030) 23.896 143 

(169.820, 65.472) 27.184 158 (206.284, 80.524) 27.742 67 

(71.982, 81.718) 25.382 379 (62.561, 16.912) 23.763 66 

 
Table 4. Ten results shown in Figure 5(c). 

P r PN P r PN 

(34.786, 163.67) 27.257 150 (252.645, 48.271) 28.241 122 

(177.100, 43.500) 28.500 148 (103.150, 122.58) 23.413 74 

(69.098, 179.443) 25.349 103 (205.563, 55.500) 26.300 137 

(145.883, 32.260) 27.740 151 (167.003, 42.453) 26.043 204 

(216.647, 44.956) 25.610 97 (148.500, 13.571) 27.472 119 

(71.982, 81.718) 25.382 379 (62.561, 16.912) 23.763 66 

 
Table 5. Ten results shown in Figure 5(d). 

P r PN P r PN 

(116.345, 107.928) 33.594 286 (115.135, 107.68) 34.296 318 

(116.459, 106.745) 34.481 348 (137.832, 112.68) 33.834 102 

(116.271, 107.794) 34.310 337 (116.256, 106.40) 33.951 309 

(132.030, 109.909) 35.091 83 (107.256, 129.41) 34.519 101 

(116.398, 101.856) 35.538 108 (116.355, 106.31) 34.913 325 

4.2. Locating Mark with Improved RCD Algorithm 

In the following experiments, the fiducial marks will be detected by our im-
proved RCD algorithm and corresponding circularity. As illustrated in Figure 6, 
the left four images (a)-(d) denote the results, which are obtained without calcu-
lating minimal circularity. Because of unsharpness of edge, the correct and bias 
circles are detected, which have similar radius and position. It is difficult to de-
termine the best true circle without additional decision condition. After calcu-
lating the minimal circularity, the true marks are located in the right four images 
(e)-(h). The detected possible circles are shown in Tables 6-9. Compared to the 
former standard RCD algorithm, the number of possible circles is fewer and the 
results are close to the true mark. By calculating minimal circularity, in Table 6 
the true circle with center pixel (71.500, 80.500) and radius 26.163 pixels is de-
tected. In Table 7 the true circle with center pixel (71.369, 81.622) and radius 27.132 
pixels is detected. In Table 8 the true circle with center pixel (75.601, 81.013) and  
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(a)                          (b)                                   (c)                            (d) 

 
(e)                          (f)                                   (g)                            (h) 

Figure 6. Results obtained by using our improved RCD algorithm and circularity. (a)-(d) Results obtained without calculating 
minimal circularity; (e)-(h) Results obtained by calculating the minimal circularity. 
 

Table 6. Results shown in Figure 6(a). 

P r PB c  

(72.313, 81.737) 26.795 309 0.8077  

(71.500, 80.500) 26.163 392 0.1288 Selected As true 

 
Table 7. Results shown in Figure 6(b). 

P r PN c  

(71.404, 82.005) 26.291 356 0.8077  

(71.369, 81.622) 27.132 253 0.1288 Selected As true 

(71.194, 81.403) 27.016 272 0.2732  

(71.570, 80.779) 26.903 290 0.1548  

 
Table 8. Results shown in Figure 6(c). 

P r PN c  

(74.985, 81.435) 27.104 257 0.6047  

(75.601, 81.013) 26.951 253 0.0339 Selected As true 

https://doi.org/10.4236/am.2019.1010061


J. K. Liu, Q. Fan 
 

 

DOI: 10.4236/am.2019.1010061 860 Applied Mathematics 
 

Table 9. Results shown in Figure 6(d). 

P r PN c  

(114.992, 108.471) 34.629 356 0.0595 Selected As true 

(14.192, 107.192) 34.529 376 0.0985  

(116.826, 106.174) 34.699 461 0.2000  

(116.500, 108.500) 34.821 383 0.1547  

 
Table 10. Time performance comparison between standard RCD and the improved RCD 
in terms of milliseconds. 

Original Images Avg T (RCD) Avg T (improved RCD) 

Figure 4(a) 77.8 ms 121 ms 

Figure 4(b) 466.8 ms 478.2 ms 

Figure 4(c) 1172.8 ms 710 ms 

Figure 4(d) 148.2 ms 145 ms 

 
radius 26.951 pixels is detected. In Table 9 the true circle with center pixel 
(114.992, 108.471) and radius 34.629 pixels is detected. 

4.3. Comparing the Execution-Time 

In order to compare the execution-time, all concerned experiments are per-
formed on the Intel i5-5200U CPU with 2.20 GHz and 8 GB RAM. The 
adopted operating system is MS-Windows 7 and the programming environ-
ment is VS2010. In order to accurately evaluate the execution-time, we run 
each image 100 times and calculate the average time in Table 10. For locat-
ing mark in small images, the execution-time is almost the same for both al-
gorithms. The time will be significantly reduced, when the mark is detected 
in a larger and complex image. 

5. Conclusions 

This paper has presented the proposed improved RCD strategy to improve the 
performance of execution-time and the accuracy of detection. The refined me-
thod can suppress the interference between different objects significantly. After 
calculating minimal circularity, the true mark will be located efficiently and ac-
curately. The experimental results demonstrate that the proposed improved 
RCD improves significantly the accuracy of detection. Experimental results also 
demonstrate that the proposed algorithm provides a considerable execution-time 
improvement. The algorithm has significant execution-time superiority in large 
and complex image. 

At the current stage, the quality of the image, such as the stability of the light 
source, the degree of image damage, clarity, etc., has a great influence on the cal-
culation results. In the future, some normalization methods will be studied to 
reduce these interferences, such as combining with pattern recognition. 
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